
DEPARTMENT OF INFORMATICS
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Avoiding Redundancy in the Management of Technical
Documentation and Models:

Requirements Analysis and Prototypical Implementation for
Enterprise Architecture Management

Peter Velten

DEPARTMENT OF INFORMATICS
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Avoiding Redundancy in the Management of Technical
Documentation and Models:

Requirements Analysis and Prototypical Implementation for
Enterprise Architecture Management

Vermeidung von Redundanzen in der Pflege von technischen
Dokumentationen und Datenmodellen:

Anforderungserhebung und prototypische Implementierung
für das Enterprise Architecture Management

Author: Peter Velten
Supervisor: Prof. Dr. Florian Matthes
Advisor: Thomas Reschenhofer, M. Sc.
Submission Date: September 15, 2016

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, September 15, 2016 Peter Velten

Abstract

To make well-founded decisions, managers require consistent access to adequate and
expedient information. Enterprise Architecture Management approaches this challenge
by aligning information technology and business. However, as enterprises grow and
evolve, frequently the problem arises, that information is utilized in various artifacts
(e.g. documentations and reports), causing inconsistencies in content and form. Thus
their content partially overlap and redundancies occur. This factor, combined with ex-
tensive information volume, rapidly changing requirements, and manually processing
leads to 3 major problems in the documentation of the Enterprise Architecture. It is
considered as time consuming, cost extensive, and error prone.
Addressing these problems, companies demand an applicable report-generating tool to
prevent these redundancies, whereby consistent artifacts have to be created. Accord-
ingly, specific requirements arise.
In this thesis practical relevant requirements for such a reporting tool are elaborated.
Hereupon a concept is devised to accomplish and prototypically implement those
requirements. As technical environment SocioCortex is in use. SocioCortex is an
information system to organize semi-structured data within Enterprise Architecture
Management, employing a dynamic and collaborative Wiki-based approach. Thus data
is structured and presented as interconnected Wiki-pages. Additionally attributes and
tasks may be denoted to incrementally enhance the data’s structure. By applying this
system as data-provider for a report-generator the confinement of properly collected
data can be attenuated.
Via implementing this prototype the potentialities and capabilities of a reporting
function within SocioCortex shall be demonstrated. A final review evaluates the imple-
mentation and its integration within the system. Moreover additional requirements, for
the deployment in real enterprises, are discussed.

iii

Contents

Abstract iii

List of Abbreviations vi

List of Figures vii

List of Tables ix

List of Listings x

Thesis Outline xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 7
1.3 Objectives and Approach . 9

2 Foundations 11
2.1 Enterprise Architecture Management . 11
2.2 Hybrid-Wikis and SocioCortex . 15

3 Requirements Analysis 19
3.1 Functional Requirements . 20
3.2 Non-functional Requirements . 24

4 Modeling and Architecture 27
4.1 Use Cases . 28
4.2 Client-side . 31

4.2.1 Authentication . 31
4.2.2 Create Template . 33
4.2.3 Create Configuration . 35
4.2.4 Create Report . 37

4.3 Server-side . 39
4.4 Interaction of the Components . 41

iv

Contents

5 Prototypical Implementation 43
5.1 External Resources . 43

5.1.1 Creation of Template-files: Velocity 44
5.1.2 Querying SocioCortex: Model-based expression Language 46
5.1.3 Creation of Reports: XDocReport 49
5.1.4 Accessing SocioCortex: REST-API and sc-angular 51

5.2 Client-side . 52
5.2.1 Authentication . 53
5.2.2 Create Template . 55
5.2.3 Create Configuration . 58
5.2.4 Create Report . 61

5.3 Server-side . 64
5.3.1 Extract Parameters . 65
5.3.2 Generate Reports . 67

6 Evaluation 68
6.1 Scenario-based Evaluation . 69
6.2 Informed Argumentation . 73

7 Conclusion 76
7.1 Summary . 76
7.2 Critical Appraisal . 78

7.2.1 Limitations . 78
7.2.2 Thesis Approach . 79

7.3 Outlook . 80

Bibliography 81

Appendices 86

A List of Requirements 87

B Evaluation Questionnaire 88

v

List of Abbreviations

API Application Programming Interface

CSS Cascading Style Sheets

EA Enterprise Architecture

EAM Enterprise Architecture Management

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IS Information Systems

IT Information Technology

JSON JavaScript Object Notation

KPI Key Performance Indicator

MxL Model-based expression Language

OMG Object Management Group

PDF Portable Document Format

REST Representational State Transfer

SEBIS Software Engineering for Business Information Systems

SQL Structured Query Language

TUM Technische Universität München

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

vi

List of Figures

1.1 Application of Enterprise Architecture Documentation in practice . . . 2

1.2 Phases of an Enterprise Architecture implementation methodology
for the creation of an EA program . 3

1.3 EA-Cycle to develop an Enterprise Architecture in the context
of an IT governance program . 4

1.4 Four processes of IT-Landscape Management in the context of
Enterprise Architecture Management . 5

1.5 Design science paradigm in information systems research to create
utility by building and evaluating artifacts 10

2.1 Management process according to W. Edwards Deming 12

2.2 Layers and cross-functions for a holistic view on the
organization’s architecture . 13

2.3 Data model of a Hybrid-Wiki approach 16

2.4 Hybrid-Wiki data model in the context of Enterprise Architecture
Management . 17

3.1 Abstracting process to identify general requirements out of
specific requirements . 20

4.1 Process and resulting artifacts of the application 28

4.2 Use Case diagram: Use cases of the application and its interaction
with the external environment . 30

4.3 Activity diagram: Client-side authorization mechanism 32

4.4 Activity diagram: Client-side generation of a new template 34

4.5 Activity diagram: Client-side generation of a new configuration 36

4.6 Activity diagram: Client-side generation of the final report 38

4.7 Class diagram: Server-side structure utilizing the microservice
architecture . 40

4.8 Sequence diagram: Interaction between client, server, and SocioCortex . 42

vii

List of Figures

5.1 Basic types supported by the Model-based expression Language 46

5.2 Type system supported in the context of the report-generator 47

5.3 Implementation of the homescreen . 52

5.4 Implementation of the authentication procedure 53

5.5 Implementation of the template generation procedure 55

5.6 Implementation of the manual definition of parameters 56

5.7 Implementation of the first step towards the generation
of a new configuration: Definition of configuration name and workspace 58

5.8 Implementation of the second step towards the generation
of a new configuration: Definition of MxL-Queries 59

5.9 Implementation of the report generation procedure 61

5.10 Implementation of the list of final report-files 63

5.11 File structure of Microsoft PowerPoint and Microsoft Word documents 65

6.1 Evaluation methods in the context of the design science
research paradigm . 68

viii

List of Tables

3.1 Sector and amount of employees of participating companies 19

3.2 List and priority of general functional requirements 23

3.3 External non-functional requirements for internet and corporate
applications . 24

3.4 Internal non-functional requirements for internet and corporate
applications . 26

ix

List of Listings

5.1 Example of using Velocity to demonstrate the syntax of parameters . . 44

5.2 Example of using Velocity to demonstrate the iteration over sequences . 44

5.3 Example of using Velocity to demonstrate the the usage of conditions . 45

5.4 Report creation process with the usage of XDocReport 49

5.5 Converting process with the usage of XDocReport 50

5.6 Example requests of the SocioCortex REST-API 51

5.7 Authentication mechanism utilizing sc-angular 53

5.8 Prevent navigation for non-authorized users 54

5.9 Call server operation to extract parameters from a template-file 56

5.10 Create a new entity in the SocioCortex system 57

5.11 Retrieve a list of available workspaces . 58

5.12 Embedding of the build-in MxL-editor to define queries in the creation
of a configuration . 59

5.13 Execute queries to retrieve the values for the creation of the final report 62

5.14 Combine parameters and template-file for a single server request to
create the final report . 63

5.15 Server-side REST-requests to address the different microservices 64

5.16 Regular expression to define the pattern of parameters 66

5.17 Extract parameters by scanning through template-files with the aid of
regular expressions . 66

5.18 Server-side generation of the final report utilizing XDocReport 67

x

Thesis Outline

Chapter 1: Introduction

Chapter 1 motivates this thesis by emphasizing the importance of Enterprise Architec-
ture Documentation in practice as well as in academia. In particular the focus is on the
approaches of creating artifacts. Thereupon resultant problem areas and challenges in
enterprises are pointed out. Subsequently the thesis objective is stated and the followed
research paradigm is outlined.

Chapter 2: Foundations

Chapter 2 elucidates the domain background of this thesis. Thus Enterprise Architecture
Management and its inherent tasks are defined. Furthermore the concept of Hybrid-
Wikis is explicated and the instance SocioCortex is introduced.

Chapter 3: Requirements Analysis

For the purpose of constructing a report-generating application, functional require-
ments from real enterprises are collected and analyzed. In addition, non-functional
requirements for internet and corporate applications are derived from literature.

Chapter 4: Modeling and Architecture

Prior to concrete implementation, models of the structure and behavior of the appli-
cation are delineated. The notation and diagrams of the Unified Modeling Language
(UML) is utilized for this purpose.

Chapter 5: Prototypical Implementation

Chapter 5 expounds the implementation of the application. At first the external
resources, used to facilitate the implementation process, are explained. Subsequently
the client- and server-side implementation is outlined by providing illustrations and
code listings.

xi

Thesis Outline

Chapter 6: Evaluation

The prototypical application is descriptively evaluated according to the design science
paradigm. Thus feedback, to predefined use case scenarios, is solicited from repre-
sentatives of enterprises to assess the functional requirements. The non-functional
requirements are evaluated by reasoning with critical and factual arguments.

Chapter 7: Conclusion

In the conclusion the done work is recapitulated in a summary. Furthermore limi-
tations of the application are identified. Hereto also the approach of this thesis is
critically examined. Ultimately, prospective areas of the application and ideas for future
developments are suggested.

xii

1. Introduction

Not only high-tech firms, also brick-and-mortar enterprises use information technology
platforms to support executive decisions to advance business performance (Weill
and Ross 2009, pp. 1-9). Hereto up-to-date information in form of documentations
and reports of the enterprise organization is imperative. Addressing this challenge
section 1.1 motivates this thesis by expounding the importance of documentation
in organizations in the context of Enterprise Architecture Management. Section 1.2
identifies the arising problems in practice by elaborating interview results and by
examination of theoretical background. On the basis of these problems section 1.3
elucidates the objective of this thesis and outlines the followed research approach.

1.1. Motivation

Due to changing market requirements, an ongoing globalization, the emergence of IT
to an enabling driver, and other environmental influences (e.g. technical or regulatory
amendments), the complexity of IT-landscapes in organizations increases continuously
(Buckl, Dierl, Matthes, and Schweda 2010, pp. 1-2). This fact bears major challenges
especially for medium to large enterprises. EAM approaches this challenges by align-
ing information technology and business to gain a strategic advantage by realizing
cost savings, enhancing availability, and increasing failure tolerance (Roth, Hauder,
Farwick, et al. 2013, pp. 1-4) (Buckl, Matthes, Neubert, and Schweda 2009, pp. 1-2). The
importance of IT-business alignment is assessed by studies and research (Chan 2002)
(Chan, Huff, Barclay, and Copeland 1997) and by surveying IT-executives, who ranked
IT-business alignment as top issue in their organization (Luftman, Kempaiah, and Nash
2006).
The rising interest and application of EAM cannot only be observed in practice, but
also in academia. In the paper "Enterprise Architecture: What Aspects is Current
Research Targeting" Langenberg and Wegmann analyzed research activities in EAM by
evaluating papers referencing the term "Enterprise Architecture". They concluded, due
to the number of publications, a rising interest in research. (Langenberg and Wegmann
2004)
A significant part of EAM is the documentation of the Enterprise Architecture. While
this includes information for maintaining and development, a documentation consists
of current information as well as information about future states of the architecture.

1

1. Introduction

An Enterprise Architecture is comprised of infrastructure components, business ap-
plications, business processes, and their relationships to each other. The scope of
documenting these artifacts can be illustrated by considering the pure amount of busi-
ness applications utilized in enterprises. From experience, as well as referencing the
papers of Sabine Buckl or Sascha Roth, several thousand applications are in use in large
enterprises. Additionally they are not operating independently; instead these applica-
tions are highly interconnected. Furthermore the long lifespan of applications amplifies
the need of proper documentations, since descriptions of functionality, architecture,
and connections to other applications should be available over the long term. (Roth,
Hauder, Farwick, et al. 2013, pp. 1-4) (Buckl, Dierl, Matthes, Ramacher, et al. 2008,
pp. 1-3)
Further practical evidence for the application of Enterprise Architecture Documentation
can be derived from the results of a survey, provided by a cooperation of the University
of Innsbruck and the Technische Universität München. In this survey 179 participants
answered a questionnaire about key problems in EA Documentation. An overview
of the usage of EA Documentation, based on this survey, is illustrated in Figure 1.1.
(Farwick, Breu, Hauder, et al. 2013)

Automated

18.7%

Non-automated 64.2%

None

17.1%

Figure 1.1.: Application of Enterprise Architecture Documentation in
practice (Farwick, Breu, Hauder, et al. 2013)

As the pie-chart reveals, 18.7% of the participants already implemented automated EA
Documentation mechanisms, 64.2% using EA Documentation, albeit not automated,
and only 17.1% do not know or do not use any EA tools at all (Farwick, Breu, Hauder,
et al. 2013, p. 4). Totaled up, 82.9% of the enterprises uses documentation techniques
and tools, evincing that these are subjects in enterprises to a vast extent. The applied
tools can cover various areas, ranging from the collection of data, via the creation of
artifacts (e.g. documentations and reports), through to comprehensive EAM tools.

2

1. Introduction

An overview and categorization of commonly used tools can be examined in the
"Enterprise Architecture Management Tool Survey 2008" provided by Matthes et al.
(Matthes, Buckl, Leitel, and Schweda 2008).
Alongside practical usage, also in theory Enterprise Architecture Documentation is
considered as crucial for Enterprise Architecture Management. While there is no
consensus over a concrete proceeding in EAM, several books and papers coincide to the
significance of the usage of EA Documentation. Subsequently an overview of literature,
covering the usage of EA Documentation, will be provided. The selection entails the
book of Scott A. Bernard, the EA Cycle of Niemann, and the IT planing process of
Hanger. For a further summary of relevant EAM literature the written report "On the
State-of-the-Art in Enterprise Architecture Management in Literature" of Sabine Buckl
and Christina M. Schweda is suggested (Buckl and Schweda 2011).
Scott A. Bernard describes in an implementation methodology how to implement and
document an Enterprise Architecture, wherein he declares documentation as one of the
keys to success. The implementation methodology is splitted up in 20 steps, clustered
into four phases, as Figure 1.2 reveals (Bernard 2012, pp. 85-99).

Establishment
of an EAM
function

Framework
and tool
selection

EA
 Documentation

Use and
 maintain

the EA

Figure 1.2.: Phases of an Enterprise Architecture implementation methodology for the
creation of an EA program according to Scott A. Bernard (Bernard 2012,
pp. 85-99)

While this section motivates the application of EA documentation, phase three is
highlighted. At this stage the current as well as future scenarios should be analyzed.
This includes strategy, business, information, services, and infrastructure. In this
phase artifacts are generated and organized. They include reports, documentations,
overviews, analysis, and studies. For this purpose, several specialty tools may be
required. Examples are general document-, spreadsheet-, and graphics applications.
Bernard suggests to store the created artifacts in an appropriate EA repository. It
should consist of a database and a file directory to archive all gathered information.
As the other phases are out of the scope of this thesis, an extensive explanation is
outlined in his book "An Introduction to Enterprise Architecture". While Bernard only
abstractly describes the generation and storage of artifacts, concrete implementation
recommendations is left up to the reader. (Bernard 2012, pp. 85-99)
However, it becomes clear, that supporting tools are essential, as the purely manual
execution of these tasks leads to severe problems. Still many companies (see Figure 1.1)
are not using appropriate tools.

3

1. Introduction

Klaus D. Niemann describes the preceding in EA Management as a cycle of four steps
with a central controlling unit. Thereby he concentrates on the usage of EAM in the
context of an IT governance program. In his book "From Enterprise Architecture to IT
Governance" Niemann explains every of the steps in detail in chapter 4 to 7. Figure 1.3
depicts the phases, while highlighting the essential part for this thesis. (Niemann 2006,
p. 37)

Document

Analyze

Plan

Act Check

Figure 1.3.: EA-Cycle to develop an Enterprise Architecture in
the context of an IT governance program based on
Klaus D. Niemann (Niemann 2006, p. 37)

The documentation is the first step and constitutes how an Enterprise Architecture
should be structured and documented. In this process the IT assets and relationships are
documented in the required format. Thus plans, references, analysis, and documents
are provided to organize the IT. Subsequently the analyze step uses and evaluates these
artifacts. In the planning step target scenarios are developed, whereupon an imple-
mentation of scenarios take place in the act step. The central check unit controls and
secures the process. Niemann concentrates in the documentation step on the different
layers of an Enterprise Architecture, namely business architecture, software architecture,
and systems architecture. Also he declares to document the current and future state,
whereby the future state is not developed in the document phase, but rather in the
planning phase. Niemann is more concrete, considering the implementation of such a
program, as he provides application scenarios. While these scenarios provide different
viewpoints, concrete implementations are absent. As with Bernard, Niemann also
suggests the creation of documents and other artifacts, whereby the format and the
creation-procedure remains unclear. (Niemann 2006, pp. 28,37,51,75-122) (Buckl and
Schweda 2011, pp. 99-101)

4

1. Introduction

Inge Hanschke provides a practical toolkit in her book "Strategic IT Management - A
Toolkit for Enterprise Architecture Management". In this book she tries to close the
gap between literature approaches and practice by providing practice-proven prescrip-
tions, guidelines, and best practices in the context of EA Management. Following this
practical approach, she amplifies her preceding by presenting the EA Management tool
"iteraplan" (iteratec GmbH 2016).
She portrays methods for the management subjective "Business Landscape", "IT Land-
scape", and "Technology Landscape", whereby strong focus lays on the "IT Landscape".
IT Landscape management links business and IT-structure and creates a transparent
overview of the current and future status. While this is more abstract, she defines
the task of Enterprise Architecture as the procedure of "...pulling together disparate
information from business and IT and create associations between elements such as business
processes (from the business) and applications (from IT)." (Hanschke 2009, p. 114). For this
subjective she differentiates between four processes, which are delighted in Figure 1.4.
(Hanschke 2009, pp. 138-139) (Buckl and Schweda 2011, p. 108)

 Documenting
the IT

Landscape

 Analysing the
IT Landscape

model

IT Landscape
planning

Further
 development

of the
IT Landscape

Figure 1.4.: Four processes of IT-Landscape Management in the context of Enterprise
Architecture Management according to Hanschke (Hanschke 2009, pp. 138-139)

In the highlighted process "Documenting the IT Landscape" an overview of the ap-
plications and their relationships are provided. A relationship can exist between the
applications themselves or between the the application and the business landscape
respectively the infrastructure landscape. Hereby she describes a life-cycle of the docu-
mentation by first inventorying what exists and then try to maintain this information
permanently. This is the so called "maintenance concept". Hanschke does not go into
detail, while describing concrete formats or creation techniques for artifacts. However,
she identified the problem, that data, collected from various data sources, is often not
up-to-date or incomplete. (Hanschke 2009, pp. 138-142)

As they are different viewpoints and procedures in EAM, exact characterizations and
definitions applicable for this thesis will be provided in chapter 2.
All these approaches in different contexts of EAM have the major challenge of documen-
tation in common, including the issue of creating appropriate artifacts. The artifacts,
including documentations and reports, are frequently created manually, whereby fail-
ures are provoked. Also the topic of changing data, resulting in outdated information,

5

1. Introduction

was thematised. As the degree of documentation, alone by regarding the amount
of application specific documentations, is enormous, a lot of information is utilized
redundantly in different artifacts. By this redundancy, intertwined with manually
proceeding, the occurring of failures is inevitable. Also the workload is tremendous if
an information changes and all artifacts have to be adapted. Although these problems
were recognized in literature and practice, solutions often lack of concrete approaches
or implementations. Only Hanschke provided a properly EAM tool, albeit the question
remains how concrete documents for documentation-reasons are created.

Summarizing, there is a strong need for documentation in the context of EAM. This
need is recognize both in practice, e.g. in firms and enterprises, and in academia. In
firms new division and departments have been established. Also tools for supporting
this task with automatic mechanisms were introduced, even when the amount of
enterprises, utilizing these tools, is outnumbered. In academia a rising amount of
published paper in this topic can be observed. Although many recommendations
are provided of handling this topic, different problems occur by applying proper
EA Documentation in enterprises. Especially the creation of documents and other
artifacts is problematic. Oftentimes the reason is due to abstract proposals, whereby
concrete implementations are missing, which are oriented on concrete requirements
from practice. To grasp the topic, the next section will formalize and elucidate these
problems in more detail.

6

1. Introduction

1.2. Problem Statement

As already mentioned, large enterprises have several thousand of applications running.
The properly documentation of these applications and their relationships, but also of
the organizational structures and processes is a crucial part of Enterprise Architecture
Management.
Often this documentation procedure, which includes the creation of technical documen-
tations, reports, and other artifacts, is done manually. Thus information from different
sources are combined and final reports are generated. Many a time an information is
used in several artifacts simultaneously. This fact, combined with extensive information
volume and rapidly changing requirements, leads to 3 major problems in Enterprise
Architecture Documentation. It is considered as time consuming, cost extensive, and
error prone. (Hauder, Matthes, and Roth 2012, pp. 1-2)
These problems are not only occurring in the creation of documentations, also the
gathering and collection of data is identified in academia and practice. Although
this is a major topic, this is not covered in this thesis. There are different approaches
available. For example Farwick et al. proposes tools to integrate information out of
a cloud infrastructure into an EA view automatically. Additionally he provides a
prototypical implementation for this approach (M. Farwick, B. Agreiter, R. Breu, et al.
2010). Buschle and Holm follow a similar approach by illustrating how to utilize a
vulnerability scanner to create EA models automatically (Buschle, Holm, Sommestad,
et al. 2012).
In this thesis a system with a proper data basis is taken for granted. By choosing a
Hybrid-Wiki platform, as described in section 2.2, this restrictive presumption can be
mitigated.
More concrete reasons for the aforementioned problems can be explicated by determin-
ing the operational proceeding in enterprises. First, often spreadsheets and text (e.g.
Microsoft Office) is used by companies for documentation (Buckl, Matthes, Neubert,
and Schweda 2009, p. 4). From experience some companies also use presentations as
documentation format. While these tools have a good capability of structuring and
styling documents, in combination with the complexity of Enterprise Architecture they
have the problem of not scaling properly. Furthermore it is difficult to maintain these
documents consistent, also because to the amount of frequent changes. (Buckl, Matthes,
Neubert, and Schweda 2009, p. 4) (Farwick, Breu, Hauder, et al. 2013, p. 1)
By conducting interviews with several Enterprise Architects, these problem could be
concretized. Thus different problem areas were reported, in which they struggle to
produce consistent artifacts.

7

1. Introduction

• As abstractly mentioned, the participants reported the need for properly Microsoft
Word and Microsoft PowerPoint documentations. Up till now they are using many
templates, while there is a lot of freedom to edit these documents. Therefore
different layouts emerged. Furthermore no clear repository for these documents
is available. As consequence these documents are distributed over the company
and therefore it is challenging to find the right information in a short space of
time.

• The problem of reusing text-fragments in different documents. This redundancy
causes huge time effort in the case of changing source data, since all artifacts have
to be changed properly. Of course in doing so, errors are provoked.

• Related to the aforementioned problem, often information in these documents are
copied from information systems (EAM tools). While these information should
be kept synchronized, there is no present way to link the text documents with the
fragments in the EA tools.

• Current solutions of exporting information of EA-tools lacking in the power of
office tools. Formatting therefore becomes very difficult. The resulting documents
were contorted and a lot of work has to be done afterward to officially publish
them, as often this documents have to be printed out and archived.

• Since the documents were distributed and no central EA repository exist it is
not possible to create reports about the meta information. As a consequence it is
impossible to state how many documents exist or which ones are missing. Another
use case might be the identification of application without proper documentation.

In total it can be stated, that the creation of artifacts within EA Documentation has many
problem areas involved. To narrow the scope of this thesis, only defined problems can
be addressed. It gets clear from the concrete problems, that the application of powerful
text-formatting tools are desired. Also because of the knowledge of the employees to
handle these tools. However, the purely application of these tools is not expedient, as
information cannot be linked with data sources and inconsistencies occur.
One citation of an enterprise architect states the demand of enterprises in one sentence:

"There is no parent solution how to create, edit, and mange technical documentations
in a Hybrid-Wiki based system, with the functionality of standard desktop-based
tools." (Enterprise Architect)

8

1. Introduction

1.3. Objectives and Approach

There are only few approaches considering concrete documentation, including the
generation of artifacts of the Enterprise Architecture (Grunow, Matthes, and Roth 2013,
p. 2). In present literature authors mostly follow a more principle approach, while they
leave concrete instances of the problem open for the reader. Resulting in an error-prone,
time-consuming, cost-extensive approach to EA Documentation.
While there is a notable demand of tool support in EA Documentation, different tasks
has to be accomplished. Beginning by the collection of data and information and ending
with the creation of artifacts (e.g. documentations and reports). This thesis focuses on
the creation of artifacts. Therefore an application should be implemented, to create
documentations and reports in a suitable manner to avoid one of the causes for these
problems: The redundancy of information used in different documents.
For this purpose concrete requirements in literature are nonexistent. Therefore require-
ments from real enterprises should be collected and analyzed. With the aid of modeling
languages a suitable solution, addressing this requirements, should be produced. The
generated solution should be transferred to a prototypical implementation. While there
is the observation for a growing interest for web 2.0 tools in enterprises, a modern
web application is targeted (Büchner, Matthes, and Neubert 2009, p. 1). Ultimately an
evaluation assesses the functionality of the application.

This approach follows the design science paradigm of Hevner et al. It seeks to extend the
boundaries of human and organizational capabilities by creating new and innovation
artifacts. By providing intellectual and computational tools, this practical approach is
considered as a problem solving paradigm. This artifacts should address fundamental
problems of the productive application of IT. (Hevner, March, Park, and Ram 2004)
Figure 1.5 summarizes the approach in a comprehensive exposition.
The problem can be derived from the environment, by identifying business needs. It
consists of people, business organizations, and their used technology. In this thesis the
needs are gained by raising concrete requirements from real enterprises. Based on these
business needs the actual information systems research take place, subdivided into
two phases: The build phase and the evaluation phase. The build phase has to goal of
creating utility. In this thesis this is accomplished by building a functioning prototype.
Finally the tool will be evaluated to assess the utility, quality and effectiveness. While
Hevner proposes different methods of evaluation, in this thesis the evaluation is
done via a descriptive analysis. The knowledge base provides the foundations and
methodologies from academia. From this base suitable modeling-instruments are
utilized. Furthermore non-functional requirements are derived from literature. By

9

1. Introduction

passing through this process, additional knowledge is generated, which can be added
to the knowledge base. Therefore the gathered requirements or the evaluation results
might be helpful for other researchers. (Hevner, March, Park, and Ram 2004, pp. 79-81)

Technology

Organization

People

Environment

Build

Evaluate

IS Research

Business
Needs Foundations

Methodologies

Knowledge Base

Applicable
Knowledge

Assess Refine

Additions to the
Knowledge Base

Application in the
Appropriate Environment

Figure 1.5.: Design science paradigm in information systems research to create utility by
building and evaluating artifacts according to Hevner (Hevner, March, Park, and
Ram 2004, p. 80)

10

2. Foundations

Enterprise Architecture Management substantiates this thesis by providing action fields
to keep enterprises competitively viable. However, in academia no commonly accepted
definition exist. Nevertheless this chapter defines EAM, applied throughout this thesis,
by clarifying its methodology, procedure, and goals. As mentioned in chapter 1 the
focus in this thesis is on the creation of documentations and reports, whereas the
data collection and storage is not being targeted. To water down this confinement,
the concept of Hybrid-Wikis will be outlined, while introducing an instance, namely
"SocioCortex" as data provider for the application. In this approach, content is generated
dynamically by a collaborative user base. The SocioCortex system will play a crucial
role in the course of this thesis, as it not only provides the information for generating
reports, but it turns out, that it is also a perfect environment to store created artifacts,
and is therefore also used as EA repository, as suggested by Bernard.

2.1. Enterprise Architecture Management

Enterprise Architecture Management covers business- as well as IT aspects. Even no
generally valid definition exist, there is a consensus, that EAM supplies a holistic
view of the enterprise’s organization, covering stakeholders, locations, and business
processes. The goal is to provide relevant information to support a decision-making
process. (Roth, Hauder, Farwick, et al. 2013, pp. 1-2).
Enterprise Architecture is defined by the International Organization for Standardization
in no. 42010 as follows (“ISO/IEC/IEEE Draft Standard for Systems and Software
Engineering – Architectural Description” 2010):

"Enterprise architecture (EA) is the fundamental conception of the enterprise in its
environment, embodied in its elements, their relationships to each other and to its
environment, and the principles guiding its design and evolution."

By taking an perspective of an overall Enterprise Architecture, the management ad-
dresses the alignment of IT and business through a common vision, alignment, and
standardization. Hereby the business drives EAM, whereby IT enables business strate-
gies and goals. (Buckl, Dierl, Matthes, and Schweda 2010) (Matthes, Buckl, Leitel, and
Schweda 2008, p. 24)

11

2. Foundations

As the name implies, EAM is a management discipline. Therefore the typical manage-
ment process, depicted in Figure 2.1, can be applied. More information about this cycle,
also known as Deming Cycle can be found on the website of the institute of W. Edwards
Deming (The W. Edwards Deming Institute 2016).

Plan

Do

Check

Act

Figure 2.1.: Management process according to W. Edwards
Deming (The W. Edwards Deming Institute 2016)

In the context of EAM each part can be described as follows. (Buckl, Matthes, Neubert,
and Schweda 2009, p. 2) (The W. Edwards Deming Institute 2016) (Diefenthaler and
Bauer 2014, pp. 1-2)

• Plan
In the planning phase, the current (as-is) and the future state of the enterprise
architecture will be drafted. This includes the development of future scenarios to
support decision making. After formulating these theories the start of the plan
will be prepared.

• Do
In the do phase selected scenarios will be realized through programs, projects,
and initiatives.

• Check
In the check phase outcomes are analyzed and evaluated. So the accrued Enterprise
Architecture will be compared to the planed. Success and progress will be
measured, but also emerging problems will be recognized. For measurement a
KPI-based approach is recommended.

• Act
In the act phase potential process improvements will be identified based on the
results from the check phase. Goals and plans can be adjusted, whereupon a new
cycle can be prepared.

12

2. Foundations

They main tasks of EAM, to support and execute the management phases, are docu-
mentation, communication, and analysis.

• Documentation
The documentation task supports the plan phase in the management cycle, as it
documents the current state of the EA. This presupposes the development of a
suitable information model for the EA. Besides the current situation, also a future
state should be derived from a long-term vision of the enterprise. (Buckl, Matthes,
Neubert, and Schweda 2009, p. 2)
Hereby different elements on different layers and cross-functions should be
considered to get a holistic view on the architecture. While all layers are important
for executing EA Management, the implemented degree of detail might differ
between enterprises. Also the degree of abstraction might vary. The layers and
cross-functions are depicted in Figure 2.2 (Matthes, Buckl, Leitel, and Schweda
2008, p. 29). Each layer includes different applied concepts. For a more detailed
description of each layer and cross-function the written report of Matthes et al. is
suggested (Matthes, Buckl, Leitel, and Schweda 2008).

Business Service Layer

Application Layer

Business Layer

Infrastructure Layer

Infrastructure Service Layer

Figure 2.2.: Layers and cross-functions for a holistic view on the
organization’s architecture (Matthes, Buckl, Leitel, and
Schweda 2008)

• Communication
To support the planning phase, various stakeholders are involved, hence the
required data is collected from different layers (Figure 2.2). This might be, for
instance, Project Managers, Service Managers, or Enterprise Architects. The
existing terminology gap between business and IT can impede the cooperation
and communication within the EA Management process. To close this gap
visualizations are often used. McDavid proposes an architectural approach by
providing different levels of abstraction from business to IT (McDavid 2003).
(Buckl, Matthes, Neubert, and Schweda 2009, pp. 1-2)

13

2. Foundations

• Analysis
Finally, the check phase of the current and future architecture has to be analyzed
and evaluated. This supports the last phase of the management cycle. The results
of the analysis task are provided to the act phase to improve decision making and
to prepare the advancement by starting a new iteration. (Buckl, Matthes, Neubert,
and Schweda 2009, p. 2)

Summarizing, EAM plans and manages the evolution of the Enterprise Architecture.
Hereto classical management approaches can be applied. The different tasks support
and implement those management processes. To state the overall goal of EAM Matthes
et al. can be referenced (Matthes, Buckl, Leitel, and Schweda 2008, p. 24):

"The goal is a common vision regarding the status quo of business and IT as well
as of opportunities and problems arising from theses fields, used as a basis for a
continually aligned steering of IT and business."

14

2. Foundations

2.2. Hybrid-Wikis and SocioCortex

Wiki-platforms emerged from the evolution to the new web 2.0 paradigm. They follow
the principle of harnessing collective intelligence (O’reilly 2007, pp. 22-27). Basically
Wikis are content management systems for creating and editing content. (S. Murugesan
2007, pp. 2-3) Wikipedia, with more then 5.2 million articles, only in the English version,
is probably the most famous instance of a Wiki available on the internet (Wikimedia
Foundation 2016).
As collaborative information systems find growing interest in enterprises, the question
arises, how to align the data with the corresponding model. The top-down approach
migrates the data when the related model changes or evolves (model-first). In the
bottom-up approach first data is generated, whereby the model aligns to that data
(data-first). More details on this approaches can looked up in Reschenhofer et al.
(Reschenhofer, Bhat, Hernandez-Mendez, and Matthes 2016, pp. 2-3).
A more collaborative approach is suggested in "Hybrid-Wikis: Empowering Users to
Collaboratively Structure Information" by Matthes et al. This "Hybrid-Wiki" approach
supports the evolution of the model and its data in a coherent and consistent manner
(Matthes, Neubert, and Steinhoff 2011). (Reschenhofer, Bhat, Hernandez-Mendez, and
Matthes 2016, pp. 1-2).
The goal of such a Hybrid-Wiki approach is to lower the barriers for non-expert users.
Without knowing about the background, they should be able to enter structured data.
To solve this problem Matthes et al. proposes to enrich these contents later with simple
key-word-like annotations by experienced users or experts. While the notion of semantic
annotations should be avoided, the user implicitly creates semantic, by filling data into
fields, or create new fields in forms. (Matthes, Neubert, and Steinhoff 2011, pp. 1-2).
The corresponding data model of a Hybrid-Wiki approach is depicted in Figure 2.3.
The concept is developed by the chair of Software Engineering for Business Information
Systems (SEBIS) of the Technische Universität München. It is based on the modeling
framework of a former tool called Tricia. (Matthes, Neubert, and Steinhoff 2011, p. 6)
Each wikipage can contain multiple attributes, while each attribute can have a list of
values. A Value is an abstract type, concrete Values might be StringValues or LinkValues.
Also a wikipage can have multiples tags assigned to it. On the lefthand side of the
diagram, the Wikipage, TypeTag, Attribute and Value are provided for structuring the
data in Hybrid-Wikis. On the righhand side TypeTagDefinition, AttributeDefinition, and
Validator are concepts to specify integrity constraints. So the creation of a TypeTagDefini-
tion specifies the values an user is urged to enter. While TypeTagDefinition and TypeTag,
and Attribute and AttributeDefintion are loosely coupled, users only receive suggestions
for new attributes or tags. Thus new attributes can be created top-down. Integrity

15

2. Foundations

name:String

TypeTagDefinition
name:String

TypeTag

...

Wiki

...

WikiPage

name:String

Attribute
name:String

AttributeDefinition

validMessage:String

Validator
...

Value

text:String

StringValue
link:String

LinkValue ...ValidatorMultiplicityValidator

Tag.name

conforms
TypeTagDefinition.name

* 0...1

*
*tags

*

1

1

1...*values

Attribute.name
conforms

AttributeDefinition.name

* *

validates

*

*

wikipage

attributes

*

*

validators

1

1

*

11

attributes

typeTagDefinition

definitions

wikipages

*

Figure 2.3.: Data model of a Hybrid-Wiki approach according to Matthes et al. (Matthes,
Neubert, and Steinhoff 2011, p. 7)

constraints defined in AttributeDefinition can be specified using Validators. For example,
a MultiplicityValidator specifies how many values an attribute can have (at-least-on,
at-most-one, exactly-one, etc.). Validators are apparent by showing feedback messages
for violated integrity constraints. They are called "soft validators", while they only
warn users, but do not forbid the user to break them. (Matthes, Neubert, and Steinhoff
2011, pp. 6-7)
This Hybrid-Wiki approach was applied in the course of the Wiki4EAM community,
by research of TUM with collaboration of 25 German enterprises. The outcomes of
these projects, using this approach to document their Enterprise Architecture, showed
positive aspects. It demonstrated, that stakeholders were empowered to collaboratively
reveal their information demand. Furthermore the EA model emerged bottom-up in
short time, while the content was created in early stages of EA initiatives. Further
positive aspects as well as challenges are described in (Reschenhofer, Bhat, Hernandez-
Mendez, and Matthes 2016, pp. 3-4).

16

2. Foundations

As the Hybrid-Wiki approach is an extension of classical Wikis, the terminology of
Wiki and Pages was applied. These terms already referred to kind of representation
and content creation. As the application in the context of EAM revealed, Hybrid-Wikis
are not only intended for traditional knowledge management, but also for capturing
architecture elements. Examples might be processes, projects, and tasks. Therefore a
new terminology evolved, while the semantics remained the same. Now Wikipage is
called Entity and a Wiki is labeled as Workspace. The updated data model in the new
context is depicted in Figure 2.4. While trying to reduce the complexity of the model
and to keep the system intuitive and self-explanatory, the coupling between entities
and entity types is simplified. An entity now can only be assigned to one type. So
by removing the concept of TypeTag, Entity and EntityType are now directly connected
to each other. The concepts of workspaces, entities, and entity types are now used
throughout this thesis. (Reschenhofer, Bhat, Hernandez-Mendez, and Matthes 2016,
pp. 5-6).

name:String

EntityType
name:String

Entity

...

Workspace

name:String

Attribute
name:String

AttributeDefinition

constrMessage:String

TypeConstraint
...

Value

...

NumberValue
...

...Value
...

...Constraint
...

NumberConstraint

Entity.type

conforms
EntityType.name

* 0...1

*entity

*

1

1...*values

Attribute.name
conforms

AttributeDefinition.name

*

constraints

*

*

attributes

*

*

typeConstraint

1

1

*

11

attributeDefinition

entityType

definitions

spacespace

0...1

*

Figure 2.4.: Hybrid-Wiki data model in the context of Enterprise Architecture Management
according to Reschenhofer et al. (Reschenhofer, Bhat, Hernandez-Mendez, and
Matthes 2016, p. 5)

While integrating proven features of this Hybrid-Wiki approach with concepts of
end-user-oriented quantitative model analysis, the support for knowledge-intensive
processes, and by adding a standardized REST-API to access all of these features, a

17

2. Foundations

new platform, named SocioCortex was developed. It provides the foundation for the
development of diverse applications. A more detailed description and an overview of
the architecture can be followed up at the website of the SEBIS-chair, which developed
this platform (SocioCortex - A Social Information Hub 2016).
SocioCortex provides an interface to use its features. Furthermore the platform provides
with MxL a powerful query language to access the data in the system. By practical
tests, in the course of WIKI4EAM, positive aspects could be observed. Therefore
the platform qualifies excellently for the usage as data provider and repository for a
report generating application in the context of Enterprise Architecture Documentation.
Herewith the confinement of a proper data basis is decomposed.

18

3. Requirements Analysis

Many reporting and documentation tools have their existing repository of information
(Buckl, Dierl, Matthes, Ramacher, et al. 2008). This can be assumed to be present as
section 2.2 outlined, by applying SocioCortex as technical environment. Therefore the
analysis of requirements concentrates on the generation of artifacts.
From literature no concrete functional requirements could be derived, hence enterprises
had to be asked for their requirements. This follows the design science paradigm
of Hevner et al. by raising business cases from the environment. Based on these
requirements a tool can be constructed to tackle these.
Four enterprises from different sectors showed interest in the development of a report
generating tool in the context of EAM. By complying with confidentiality, no concrete
names can be stated. However, Table 3.1 lists the sectors and amount of employees of
the participating enterprises.

Sector Employees
Logistics 95 000
Consulting 93 000
Finance 19 200
Healthcare 1 600

Table 3.1.: Sector and amount of employees of
participating companies

With representatives of these enterprises (primary Enterprise Architects) personal
interviews and discussions were conducted. From these talks, the problems and
requirements for a report generating tool could be derived. The problem statements
were already mentioned in section 1.2. In this chapter concrete requirements are
analyzed and finally prioritized.
Mainly functional requirements could be derived from these interviews. They are
listed and explained in section 3.1. By developing an application, also non-functional
requirements should be considered. These are derived by literature research. As the
tool should be a web application, only non-functional requirements for internet and
corporate applications are considered. They are declared in section 3.2.

19

3. Requirements Analysis

3.1. Functional Requirements

As the enterprises have different ideas and expectations, accordingly diverse require-
ments were stated. Therefore first an inventory of all requirements was created. In total
24 requirements could be collected. These are listed in Appendix A.
While it is neither expedient nor feasible to create customized solutions for all specific
enterprises, the requirements were abstracted and consolidated. The result are 9 general
requirements. By this additional step a more general solution can be realized. Thus it
is not only applicable in a specific enterprise, but rather can be deployed in different
environments with similar problem areas. For specific business cases, potentially small
adaption of the application have to be made. The process is delineated in Figure 3.1.

Enterprise 1

Specific
Requirements

…

Enterprise n

General
Requirements

…

General
Solution

Enterprise 1

Specific
Business

Case

Enterprise n

Specific
Business

Case

... ...

Specific
Requirements

…

abstract

abstract adapt

adapt

Figure 3.1.: Abstracting process to identify general requirements out of specific
requirements

Following requirements could be derived from the list of specific requirements, which
are numbered from R-1 to R-24.

• Integration of visualizations
This general requirement relates to R-5, R-17, R-23. Different kinds of visual-
izations should be integrated into generated documents. Thus standard picture
formats should be supported, but also dynamic changing diagrams of entities in
SocioCortex. The application should recognize the appearing of visualizations in
the document and properly scale the forms with respect to design and legibility.
While this requirement is important for organizations, other research projects are
yet involved in this topic. For example, the SC-Visualizer, as part of the client suite
of SocioCortex, empowers the user to visualize data from the system (Software

20

3. Requirements Analysis

Engineering for Business Information Systems 2016d). Therefore this requirement
has a rather low priority in the scope of this thesis.

• Document versioning mechanism
The goal of this requirement, which relates to R-7, R-15, R-20, R-24, is to provide a
version history, to clearly state the changes of documents. Furthermore it should
be possible to determine the editor of the document. Every version of a document
should be able to recover.
While this thesis strives a different approach, changes of documents should be
avoided at all. By linking the content in the documents with up-to-date data,
changes will be obsolete. However, storing the created documents in a repository
makes sense to access the documents, filled with the outdated data. There might
be, for example, regulatory or compliance reasons for this archiving. While
the requirement of a concrete versioning mechanism has a low priority, the
implementation of handling changes of the content has a very high priority.

• Publishing workflow
This requirement relates to R-6. Only one company stipulated such a feature.
While the requirement collection is not representative, this might be interesting for
other companies, too. Thus a document should only by published, when respon-
sible or accountable persons approve the content and form. As this requirement
can be listed as extra feature for the application its priority is low.

• Reuse of sub-components
The reuse of sub-components is related to the specific requirements R-1, R-2, R-3,
R-12. As already mentioned, reports and especially technical documentations
oftentimes include the same components (e.g. text or figures). Up to now these
components are manually copied out from information sources, like SocioCortex,
and processed in desktop-based tools. The occurring problems of this procedure
and the consequential redundancy were stated in the problem statement (sec-
tion 1.2). The approach of this theses, should link the sub-components with the
data from SocioCortex. Thus every document relate to the same data source. This
crucial requirement therefore has high priority.

• Interface to present data sources
This requirement relates to R-1, R-3, R-19. While the enterprises require an
interface to present data sources, this thesis mainly focus on the interaction
with SocioCortex. For specific requirements the resulting prototype has to be
customized to access other data sources as well. As the connection to SocioCortex
is crucial for retrieving data and storing artifacts, this requirement has high
priority.

21

3. Requirements Analysis

• Integration of different file formats
The export to different file formats and the usage of different formats relates to
the requirements R-4, R-16, R-18. Thus especially the possibility of exporting to
non-editable documents should be possible. As enterprises also use presentation
tools for documentation reasons, also presentation-formats should be integrated.
This requirement has a medium priority, while the focus lies on the procedure of
avoiding redundancy and further development might support specific formats
required by the various enterprises.

• Usage of parameters and types
This requirements relates to R-8, R-9, R-10, R-21. Sub-components of documents
could be of various forms. To address these components, different types of
parameters should be applied. Thus simple parameters (e.g. strings, numbers,
dates, etc.) as well as complex (e.g. lists) should be supported. This requirement
has high priority, because it is inevitable to link components with data, without
addressing them in a proper way.

• Serial generation of documents
This requirement did arise within an intermediate presentation in the course of
the SocioCortex Community Workshop series (Software Engineering for Business
Information Systems 2016a). As participants struggled with the pure amount of
generating technical documentations, the demand of an automatically generation
of a series of documentation was formulated. Thus it relates to the single require-
ment R-22. Hence the implementation was already in progress, this requirement
is prioritized as a beneficial extra feature.

• Integration of formatting functions
This requirement corresponds to R-11, R-13, R-14. While the importance of
properly content is undisputed, the enterprises often struggled with the proper
formatting of documents. Current solutions, for example, support the export of
entities to documents. However, the design and formatting of these documents
were evaluated as being "poor". Therefore formatting functions of desktop-based
tools (e.g. Microsoft Office) are an important issue. At the first glance this
might be an extra feature to consider. But a report generating tool will not be
accepted and utilized, when the resulting documents are not in the desired quality.
Consequently this requirement has high priority.

22

3. Requirements Analysis

An implementation of all requirements would go beyond the scope of this thesis.
Therefore the requirements has been prioritized into 3 categories: High, medium, and
low. Explanation for the priority is alluded in the above description of the requirements.
Table 3.2 summarizes the requirements and shows the corresponding priority class.

Functional Requirement Priority
Reuse of sub-components High
Usage of parameters and types High
Interface to present data sources High
Integration of formatting functions High
Serial generation of documents Medium
Integration of different file formats Medium
Publishing workflow Low
Document versioning mechanism Low
Integration of visualizations Low

Table 3.2.: List and priority of general functional requirements

These functional requirements could be collected from enterprises. However, non-
functional requirements also have to be considered. Next section will derive these from
literature.

23

3. Requirements Analysis

3.2. Non-functional Requirements

The non-functional requirement, in contrary to functional requirements, do not charac-
terize what an application should do, but rather how well it operates. Examples are
how fast a program finishes a task, or how fault-tolerant it behaves. These requirements
can be distinguished in external and internal factors, whereas external factors are more
important to the users, internal factors are used for development and maintenance
reasons. While certain requirements are more important then others, depended on the
problem, Wiegers declares following external non-functional requirements for internet
and corporate applications. (Wiegers and Beatty 2013, Chap. 14)

External requirement Description
Availability The extent to which the system’s services are available

when and where they are needed
Integrity The extent to which the system protects against data

inaccuracy and loss
Interoperability How easily the system can interconnect and exchange

data with other systems or components
Performance How quickly and predictably the system responds to

user inputs or other events
Security How well the system protects against unauthorized

access to the application and its data
Usability How easy it is for people to learn, remember, and use

the system

Table 3.3.: External non-functional requirements for internet and corporate applications following
Wiegers (Wiegers and Beatty 2013, Chap. 14)

A comprehensive description of the requirements can be found in the book "Software
requirements" of Wiegers (Wiegers and Beatty 2013). Next the relevant requirements
are briefly described and their impact on the development of the application is outlined.

Availability is a big issue when running the application in productive environment.
For a prototypical implementation this plays only a minor role. Availability can be
measured by the ratio of up-time to the sum of up and down-time. This measure
is only applicable when running real servers. Of course this requirement should be
quantified, through this measure, when running on a corporate server. Nevertheless
the application should be implemented with failure-tolerant algorithms and functions
in order to prevent crashes.

24

3. Requirements Analysis

Integrity prevents information losses and checks the correctness of entered data. Han-
dling this requirement, all input fields should be checked for syntactical, and where
possible, for semantical correctness. Also files should always be checked for the right
format. Integrity includes the check, if all data are written successful and not partial or
not at all. Warning messages are a good tool, to provide feedback to the user, if any
error occurs.
Interoperability describes the extent on how a system exchange information with other
services or applications. Concreting this, already in die architecture planning, a clear
separation of client- and server- functionality should be considered. Therefore other
services can easily use the generic functions of the server. To go even further, the server-
functions should be clearly separated. For this, a microservice architecture might be
the way to go.
Performance describes the responsiveness of the system to various user queries and
inputs. Beside the measure of response time, also the measure of data capacity and
latency can be applied. For this purpose, program code, including algorithms and
procedures, should be constructed as efficient as possible. While it is not possible to
measure the efficiency, without running the application on real server, algorithmic
theory, for example, can be used to classify algorithms according to their run time;
therefore at least a theoretical measure can be applied.
Security blocks unauthorized users to access the system, including data and functions.
Also the protection against hacking attacks should be regarded. The importance of
security can be illustrated by reviewing a survey from Richardson. According to his
survey of 522 computer security practitioners, 68% have and 18% will develop a formal
information security policy. Only 1% have no security policies at all (Richardson and
Director 2008). Nevertheless, for this prototypical implementation only minimal atten-
tion to security is given. Thus an authorization service should be implemented.
Usability can also be described as user-friendliness, ease of use, or human engineering.
Thereby it measures the effort required for input actions, operating on it, and finally
the interpretation of the output. For this purpose, especially the Graphical User In-
terface should be structured very clearly. Thus no instructions should be needed, but
if nevertheless something goes wrong assistance and feedback messages should be
provided. Furthermore, through utilizing modern web technologies, a good-looking
design should be pursued.

Wiegers also defines internal factors for internet and corporate applications. While
he only lists scalability, for this system also modifiability should be considered. This
is because of the prototypical implementation, which needs the possibility for late
changes and further development. Table 3.4 gives a short description of these two
requirements.

25

3. Requirements Analysis

Internal requirement Description
Scalability How easily the system can grow to handle more users,

transactions, servers, or other extensions
Modifiability How easy it is to maintain, change, enhance, and

restructure the system

Table 3.4.: Internal non-functional requirements for internet and corporate applications following
Wiegers (Wiegers and Beatty 2013, Chap. 14)

Similar to the external requirements a full list of internal requirements can be found in
the book of Wiegers (Wiegers and Beatty 2013).
Scalability is the ability of the application to grow when the amount of users rise or
when data streams increase. Of course this requirement could be tackled by increasing
the computing capacity or the memory. This is not possible in the scope of this thesis.
Nevertheless, the application itself can be constructed to be scalable. Thus server
functionality should be programmed in a way to allow the replication and distribution
on several parallel processors.
Modifiability describes how easily code can be understood, changed and improved.
This requirement is particularly important for a prototypical implementation, while
in the future developers might take this prototype as basis for their own applications
or advance the prototype itself. For this purpose the code has to be clearly structured,
independent functionality should be encapsulated as far as possible, and comments
and documentations should be used extensively.

Now all the functional as well as the non-functional requirements are stated. The next
step consists of the construction of an appropriate solution by modeling the structure
and behavior of the application. For this purpose the requirements with the highest
priority should be considered primary.

26

4. Modeling and Architecture

An accurate implementation requires models of the structure and behavior of the
application. The goal is to communicate and understand the ideas of the software
design, while abstracting details (Fowler 2004, preface). These provide implementation
guidelines and point out coherences between different parts of the application. Thereby
emerging problems can be detected early and further development and maintenance
can be facilitated.
An accepted and widely used standard, specifying graphical notations, is the Uni-
fied Modeling Language (UML). It is provided by the Object Management Group (I.
Object Management Group 2016). Dzidek et al. showed the benefits, by conducting
experiments of implementations with and without the application of UML beforehand.
Not only the functional correctness is significantly enhanced when using UML, also
superior quality of programming code could be observed. Furthermore the complex
systems, modeled with UML, had higher understandability (W. J. Dzidek, E. Arisholm,
and L. C. Briand 2008).
UML specifies various diagrams, fulfilling different purposes. These can be clustered
into two types: Structural and behavior diagrams. Structural diagrams describe the
construction of software systems, whereby the static elements are irrespective of time.
For example, a class diagram illustrates the structure of an object-oriented system,
consisting of classes, attributes, methods, and relationships. On the contrary behavior
diagrams describe the dynamic behavior of objects, including their methods, collabora-
tions, activities, and state histories, over time. For instance, an activity diagram might
describe the changing states of the system when the user undertakes a sequence of
actions. (Object Management Group 2015, p. 725)
Notwithstanding the notation of UML is exactly specified, it is target-oriented to extend
and modify the specification with custom elements. To goal is not to suffice the stan-
dards, but rather to build understandable and intuitive diagrams. In following sections
the use case-, activity-, class-, and sequence diagram are employed. The class diagram
is classified as structural diagrams, whereas the others belong to behavior diagrams.
First the use case diagram reveals the use cases of the application and the interaction
with its environment to provide an understanding of what (not how) the application is
supposed to do. Thus it provides the general idea of the application. Subsequently the
client-side is examined with the aid of activity diagrams. For the server-side a class
diagram is used. Ultimately the communication between the components is delineated
in a sequence diagram. For an overview of all UML diagrams with descriptions and
examples the specification is recommended (Object Management Group 2015).

27

4. Modeling and Architecture

4.1. Use Cases

An use case diagram specifies what a system is supposed to do and how it connects
with its external environment. This might be users, servers or other entities. It consists
of actors, use cases, and their relationships with each other (Object Management Group
2015, p. 679). Hence an overview of the application is provided. At this point technical
details are not considered. To separate the tasks of the application a 3-fold step to
generate final reports and documentations is introduced. Figure 4.1 depicts an overview
of this process. Also one abstract level below, the generated artifacts are delineated.

Template
Generation

Template
Entity

Configuration
Entity

Report
Entity

 Configuration
 Generation

Report
Generation

1 1* *

Figure 4.1.: Process and resulting artifacts of the application

First of all a template has to be created by the user manually, including the generation
of a template-file. As in most businesses the standard office tools are prevalent, this file
is created within these. This approach addresses the stated requirements, as formatting
functions are fully available. By applying a template language, different types of
parameters can be used. The used language is outlined in the implementation chapter.
These parameters are extracted by the application to proceed with the next step, the
creation of a configuration. For each step an entity is created within the SocioCortex
system. Thus in this step a template-entity is created within the entityType Template.
To clarify the terminology: A template is used as generic term for labeling the whole
process. It consists of several components (template-file, template-name, etc.). A
template-entity is the representation of the template within the SocioCortex system.
Therefore template and template-entity might be used interchangeable. The same
pattern is used for the following steps.
In the configuration step, queries will be defined to link the parameters with data
from SocioCortex. A description of the query language is also described in the imple-
mentation chapter, as technical details should be avoided in this section. The result
is the creation of a configuration-entity. Also it will be stored in SocioCortex. One
template-entity can correspond to many configuration-entities. As a consequence it

28

4. Modeling and Architecture

will be possible to use a general template to define different clusters of queries. For
example, a configuration might address all applications, while another configuration
might address only strategic relevant applications. Both could use the same template.
The requirements of using sub-components is therefore met. Also the definition of
standard values (e.g. Strings, Numbers, etc.) and more complex values (e.g. lists) are
supported by utilizing a query language.
In the last step, the final report is created. Therefore the queries will be executed
to retrieve the actual data and the parameters in the template-file is exchanged with
the results. Different kinds of output formats should be available. In doing so text-
templates, for example, should be convertible to .pdf documents. Also a report entity is
created in the SocioCortex system. One configuration can correspond to several reports.
This approach is important, as it allows the creation of updated documents without
changing the document itself.

Hence the general procedure is explained, Figure 4.2 illustrates the whole application
in a more coherent manner with the aid of an use case diagram. The primary actor of
the application is the user. Secondary actors are the SocioCortex system and the server
of the application. The functionality of the server is encapsulated, to fulfill the internal
non-functional requirements of modifiability and scalability.
The overall goal is the generation of reports. Therefore this is the main use case. Also
the creation of templates and configurations could be use cases itself. The reporting
use case includes the creation of a configuration as a configuration is a precondition to
generate reports. To generate a configuration, the precondition of a existing template
has to be fulfilled. In the creation of a template the parameters are defined and in the
creation of a configuration the queries are defined. In the creation of the final report
queries are executed and the output format is chosen. As mentioned, the end of each
process includes the creation of an entity in SocioCortex.
A precondition for the generation is a properly authentication, also settings should be
defined. A setting might be the definition of the workspace in which the entities should
be stored. By authentication the security requirement is addressed.

The use case diagram provided an overview of the application. In the next step the
functioning of the client-side will be elucidated. For this purpose the notation of activity
diagrams is utilized.

29

4. Modeling and Architecture

Create
Template

Create
Configuration

Define
Parameters

Define
Queries

Create
Entity

Execute
Queries

Create
Report

Authentication

Settings

User

SocioCortex

Server

<< System Boundary >>

<<associate>>

<<include>>

<<name>>

Use Case Primary Actor Secondary Actor

.pdf

.docx

.pptx

...

.pptx

.pdf

...

.pptx

.docx

.pdf

...

Create
.pptx

Create
.docx

Create
.pdf

Figure 4.2.: Use Case diagram: Use cases of the application and its interaction with the external
environment

30

4. Modeling and Architecture

4.2. Client-side

In this section the uses cases are examined in more detail. With the aid of activity dia-
grams, the execution of work-flows can be described by following a graphical notation.
Different constructs, like conditions and iterations are possible and specified within
UML. Hence this is the modeling of the client-side, a work-flow correspond to the
navigation of the user via inputs on the graphical user interface. As the implementation
of a web-application is intended, the different graphical surfaces correspond to different
web-pages and web-dialogs. The implementation of the client-side can be looked up in
section 5.2.
First of all, the user has to authorize himself, before any functionality can be used. This
step is outlined in subsection 4.2.1 After successfully logging in, the steps, mentioned
in the use cases (see Figure 4.1), will be passed trough. The first step, the generation of
a template, is delineated in subsection 4.2.2. The second step, the generation of a con-
figuration is outlined in subsection 4.2.3. In the final step, described in subsection 4.2.4,
the creation of the final report is described.

4.2.1. Authentication

An authentication-mechanism is necessary to prevent an abuse of the system. This
conforms with the non-functional requirement of security. Unauthorized persons
should have no possibility to get access (reading and writing) to data. This factor is
imperative, when running the application in real enterprises, as data is a huge part
of the corporate secrets. While the application itself does not store and archive data,
but rather processes all this information via the SocioCortex system, it is required to
give the user only access, when he also has access on the SocioCortex system. The
assignment of permissions and the registration-mechanism therefore is handled only in
SocioCortex, consequently no new mechanism has to be implemented.
Therefore only a log-in function should be available. Further mechanism are imagin-
able when deploying the application in a productive environment. For example, the
functionality of creating templates and configurations could be accessible only by a
specific user group, while the creation of reports would be available for all users.
Figure 4.3 depicts the procedure in the UML notation. After opening the web applica-
tion the user gets prompted to input the user name and the corresponding password.
After checking the credentials in the SocioCortex system, he gets forwarded to the
homescreen. If they are incorrect, an error message should notify the user. Messages
and hints are instruments to increase the usability.

31

4. Modeling and Architecture

User is
registered

(SocioCortex)

Input
Username

Input
Password

Correct

Display
Homescreen

User is
logged in

(Application)

U
se

rn
am

e
:=

 f
al

se

P
as

sw
or

d
:=

 f
al

se
true

Activity Condition External
system

Object Start End

Check
Credentials SocioCortex

Figure 4.3.: Activity diagram: Client-side authorization mechanism

32

4. Modeling and Architecture

4.2.2. Create Template

After a successful authentication the homescreen of the application is displayed. It
provides an overview of all templates, configurations, and reports, but has no inherent
functionality. Consequently no modeling is necessary, as only the graphical surface has
to be developed. For further development, of a more complex graphical interface, the
technique of drawing mock-ups first is suggested.
Besides the overview of templates, the possibility of creating a new template is pre-
sented. To recap: The generation of a template is the first step towards the creation
of final reports. For this purpose, also a concrete template-file is needed in the right
format (.docx or .pptx). Other template formats are thinkable in future developments.
The creation of template-files is described in subsection 5.1.1, as this involves the
selection and application of a template language. In this modeling chapter it should be
abstracted from detailed problems. Figure 4.4 illustrates the procedure of the creation
of a template. The corresponding implementation is described in the subsection 5.2.2
of the implementation chapter.
First a new surface (e.g. dialog or page) is displayed, enclosing all activities of this step.
In doing so, the functionality of creating a template can be easily encapsulated. As a
consequence the programming code becomes more structured and therefore simpler to
maintain. Furthermore the usability enhances, while the user exactly knows in which
part of the process he is located.
On this page the user defines a name for the template first of all. Subsequently a
template-file in an eligible format has to be uploaded. In addition the parameters
utilized in that file has to be listed. Here the server provides the functionality to
extract the parameters automatically. This function is described in more detail in
section 4.3. Parameters could also be defined manually, in the case the extraction of
the application is incomplete or erroneous. A parameter consists of a name and a
type. The name identifies the parameter and the type serves as safety check in the
generation of configurations. In doing so, incorrect defined queries can be identified
more accurately. When the name, file, and all parameters are defined, the process can
continue. Subsequently completeness and correctness are checked. When failures are
identified, the process returns to the faulty spot and displays a feedback message. This
cycle repeats until all entries are correct. Now a new template-entity is created within
the SocioCortex system. SocioCortex serves therefore not only for the information
gathering, but also provides a repository to store all generated artifacts (templates,
configurations, reports). Finally the application returns to the homescreen and refreshes
the template list.

33

4. Modeling and Architecture

Upload
File

User is
logged in

Input
Name

Define
Prameter

More

no

yes

Template
Page

Correct

N
am

e
:=

 f
al

se

fil
eF

or
m

at
 :
=

 f
al

se

pa
ra

m
et

er
N

am
e

:=
 f
al

se
Create
Entity

true

Display
Homescreen

Update
List

Template
Created

Server

Activity Condition External
system

Object Start End

SocioCortex

Figure 4.4.: Activity diagram: Client-side generation of a new template

34

4. Modeling and Architecture

4.2.3. Create Configuration

The creation of a configuration is the second step for the generation of the final report.
Here the queries for the corresponding parameters are defined. For this step the query
language MxL is used. A more detailed description, with examples, is stated in the
implementation (subsection 5.1.2). However, only in the creation of the report the
queries will be executed. The process is outlined in the activity diagram in Figure 4.5.
The related implementation is elucidated in subsection 5.2.3 of the implementation
chapter.
To create a configuration, preliminary an already created template has to be chosen
from the template list showed at the homescreen. Doing so, a list of all created
configurations for that template are displayed. Consequently diverse configurations
might be created for one distinct template. An use case for this, for example, is the
creation of configurations for different clusters of applications. Many other examples
are imaginable, as long as the configurations share the same origin template.
Beside the list of already created configurations, of course the possibility of creating new
ones exist. Like the creation of the template, all functionality should be encapsulated
within one window (Activity: Configuration Page). As later described, each step can be
implemented with its own controller, with explicit interfaces to the other controllers.
Beside the definition of a name, a workspace (see section 2.2 in Foundations) is selected.
Thereby in further steps the entry of queries can be simplified. Thus keywords,
entities, and entityTypes for the selected workspace can be suggested by the system.
Furthermore the query can be checked for correctness.
The defined name and selected workspace is checked for completeness and correctness.
Entering no name, or a wrong workspace should produce a feedback message to
increase usability. When all entries are correct the next step can be executed.
Now for each parameter of the template a corresponding query has to be defined.
To avoid failures when executing these queries in the report generation step, each
parameter will be checked for correct syntax and type. For this reason, the definition
of the type for each parameter was necessary. By doing this correctness checks, the
non-functional requirement of integrity can be fulfilled.
As already mentioned, the queries will not be executed at this step. If syntax and type
are correct, the last activities can be executed. As in the creation of template, a new
entity will be created within the SocioCortex system. Subsequently the configuration is
finally accomplished and the application can return to the homescreen, while parallel
updating the configuration list with the new configuration.

35

4. Modeling and Architecture

Define
Name

Template
Created

Define
Workspace

Correct

Choose
Template

Correct

N
am

e
:=

 f
al

se

W
or

ks
pa

ce
 :
=

 f
al

se

Check
Syntax

Check
Type

Configuration
Created

Configuration
Page

Define
MxL-Queries

true

More

Create
Entity

Update
List

Display
Homescreen

syntax := false

type := false

true

no

yes

SocioCortex

SocioCortex

Activity Condition External
system

Object Start End

Figure 4.5.: Activity diagram: Client-side generation of a new configuration

36

4. Modeling and Architecture

4.2.4. Create Report

After the successful creation of a configuration and a template, the corresponding final
report can now be generated. This is the last of the 3-step procedure.
For this purpose, a configuration has to be chosen from the homescreen, as a report
always connects to a configuration. On the homescreen all reports for this configuration
are now displayed. Therefore it is possible to create several reports for one configuration.
By this approach, the problematic redundancy of components is prevented. Since the
queries will be executed only in the creation of the report, changing data will always be
up-to-date. Therefore, when a report is needed, it will be created ad hoc containing up-
to-date content. Additionally this approach fulfills an indirect versioning mechanism,
as outdated reports will not be deleted and are always accessible, even when new ones
are created. Of course the possibility of deleting reports should also be included. A
concrete version-history, however, is not intended.
The procedure of creating a report is delineated in the activity diagram of Figure 4.6.
The corresponding implementation is outlined in subsection 5.2.4.
First of all, the dialog for the creation of a report is displayed. As already emphasized
in the creation of templates and configurations, the whole functionality of this process
can be encapsulated. This procedure requires the template-file created in step 1 and the
defined queries, created in step 2. However, it does not accesses this information directly
from the above mentioned procedures, but rather access their created entities within
the SocioCortex system. Therefore the SocioCortex system represents the interface for
the different steps.
Again a name has to be defined. This name does not only represents the name of the
entity, but also serves as name for the created document. Additionally the required
format has to be chosen. The application should hereby automatically propose the
available formats. Consequently for text-template-files the possible output could either
be text-files again or pdf-files. For this prototypical implementation, the formats
.pptx and .docx should be supported. As output format additionally the .pdf format
is available. Of course it should be easy to include additional formats in further
development. Now the queries, defined by the configuration, are executed and their
values are retrieved. All information are now present to create the final report. The
template-file will be sent, together with retrieved values from the queries to the server.
The server handles the creation of the final report and returns it. The server-side is
outlined in detail in the next section 4.3.
As in the other steps an entity, containing the report-file, is created in SocioCortex.
Therefore it is permanent available. The application returns to the homescreen and
updates the report-list. In this list the report can be chosen, downloaded and used for
the user’s purposes.

37

4. Modeling and Architecture

Define
Name

Configuration
Created

Select
Format

Choose
Configuration

N
am

e
:=

 f
al

se

F
or

m
at

 :
=

 f
al

se

Report
Page

Correct

Create
Entity

true

Create
Report

SocioCortex

Display
Homescreen

Update
List

Download
Report

Report
Created

SocioCortex

Server

Activity Condition External
system

Object Start End

Figure 4.6.: Activity diagram: Client-side generation of the final report

38

4. Modeling and Architecture

4.3. Server-side

In the description of the different client-side procedures, different activities were sup-
ported by the usage of server-side functions. In this section their architecture and
functionality is outlined in more detail.
To seperate each functionality the microservice architecture is utilized. Thus the internal
requirements of modifiability and scalability can be fulfilled.
Microservices are small and autonomous units, handling only few specific tasks as
good as possible. Oftentimes the programming-code of an application is growing very
large and therefore becomes unmanageable, with regard to maintainability and further
development. By applying microservices, the functionality of these applications are
separated into small, clear, and monolithic services. Therefore the "Single Responsible"-
principle is accomplished. The separation can go so far, that only by reading the name
of the service, the underlying functionality should become apparent. Thus the code,
handling one functionality is recognized instantaneously. Each service should be en-
capsulated from the other services, enhancing the reusability of functionality. Through
this autonomy these services function independent of each other and furthermore, they
can also be deployed independently. As consequence microservices can be distributed
on different systems and are therefore very scalable. (Newman 2015)
To address a package of microservices an Application Programming Interface should
be provided. In the context of web-applications the architectural style of REST-APIs is
de facto standard.
As many descriptions and instructions are available on the internet, only a short expla-
nation of REST-APIs is provided. A REST-API is utilized for the purpose of facilitating
the communication between web-clients and web-servers. Therefore the REST-API can
be seen as face of the web-server, listening and responding to requests, but hiding the
procedures and functionality. Typical supported HTTP methods, used by an REST-API
are following. (Masse 2011, pp. 4-6,23-27)

• GET to retrieve an element from the server

• PUT to replace an element on the server

• POST to create an element on the server

• DELETE to delete an element on the server

In this application mainly two functions are done by the server-side. First the support
of defining parameters, by extracting them from template-files. This function is used
in the activity diagram of the creation of templates (see Figure 4.4). The second

39

4. Modeling and Architecture

functionality consists in the creation of reports, by substituting the parameters in the
template-file with the retrieved values from SocioCortex. This function is used in the
activity diagram for the creation of reports (see Figure 4.6). As different formats should
be supported, a microservice should be provided for each one, as each format has
their own characteristics. A pdf-output, for instance, requires the additional step of
converting the document. Hence different enterprises request different formats, only
the needed microservices can be supplied. For instance, an enterprise only utilizing
.docx documents only the corresponding microservice has to be deployed. Figure 4.7
depicts the microservice architecture of the server-side, by utilizing an modified form
of an UML class diagram.

...Report-Generator

+ extract
 Parameter()

Parameters
Service

+ createDOCX
 Report()

+ createPPTX
 Report()

+ convert
 ToPDF()
+ createPDF
 Report()

DOCX
Service

PPTX
Service

PDF
Service

External Applications

REST - API

Figure 4.7.: Class diagram: Server-side structure utilizing the
microservice architecture

The server-side therefore consists of 4 microservices: ParametersService, DOCXService,
PPTXService, PDFService. Alone by reading the name, the function of the service should
become clear. Thus the ParametersServices extracts the parameters in the definition
of parameters, while the others create the final report in the desired format. The
REST-API provides the access to these functionalities. As the functions are independent
of each other and also from the client, other applications might utilize the provided
functionality. The concrete realization of these services is described in the corresponding
implementation chapter (see section 5.3).

40

4. Modeling and Architecture

4.4. Interaction of the Components

While also the architecture of the server-side is described, all parts can be assembled to
show the communication of the different components. This includes the server-side,
client-side, and SocioCortex. For this purpose the UML sequence diagram is utilized. It
is a behavior diagram and a subtype of interaction diagrams. In contrast to a structure
diagram it is time-dependent. Therefore different actions are executed in temporal
order. The different components exchange messages and data.
Thus this diagram examines another view on the application and consequently facil-
itates the understanding and implementation of it. The sequence diagram for this
application is illustrated in Figure 4.8.

The client, depicted in the middle line, is the central unit of this application, as it
manages request calls to the server and to SocioCortex. The server and SocioCortex
have no connection to each other at all. Also it represents the interface to the user.
So by using this application the user neither cares about the server nor SocioCortex
functionality.
In the first step, the users authenticates in the application. The credentials are verified
with the aid of SocioCortex. When the credentials are correct, access to the crucial
functionality is provided.
As outlined in more detail in subsection 4.2.2 the client (by the user) defines the
template. It uses the microservice from the back-end, as it extracts the parameters
from the template-file and therefore supports this step. Also a template-entity is stored
for later access in SocioCortex. In the next step, as outlined in subsection 4.2.3 the
configuration is created. Queries are defined and validated and a configuration-entity
is created. In this step no functionality of the server-side is used. In the last step the
report is created. For this purpose, the corresponding template and configuration is
needed. Therefore these entities are returned from SocioCortex. Subsequently the
queries are executed, thus the results are retrieved from SocioCortex. In the next step,
the server creates the final report by processing these data. A report entity is created,
storing also the final report-files. Ultimately the user can download these files.

41

4. Modeling and Architecture

Server Client SocioCortex

Check
Credentials

Define
Template

Provide Access

Get Parameters

Extract
Parameters

Return Parameters

Create Template-Entity

Define
Configuration

Create Configuration-Entity

Define
Report

Create Report

Replace
Parameters

Convert

Return Report

Create Report-Entity

Download Report-File

Return Report-File

Login

Get Template-Entity

Get Configuration-Entity

Execute Queries

Return Values

Provide
File

Figure 4.8.: Sequence diagram: Interaction between client, server, and SocioCortex

42

5. Prototypical Implementation

The client’s and server’s structure and behavior was modeled with the aid of UML.
Based on these, the implementation of the application can be undertaken. The full
programming code is freely available at the SEBIS GitHub-repository under the project
"sc-reportgenerator" (SEBIS - GitHub 2016).
By the demand of growing sophistication, modern software steadily increases in
complexity (Winter and Bhattacharya 2012, p. 244). While it is neither possible, nor
reasonable to implement every part of the software by oneself, specialized libraries
and frameworks are used for specific functionality. These external resources, utilized
throughout this implementation, are explained and clarified in section 5.1.
Afterward, guided by the models and architectures, the implementation of the client-
side is elucidated in section 5.2. Accordingly the authentication, the creation of tem-
plates, configurations, and reports will be clarified. In section 5.3 the functionality of
the server is implemented. As outlined in the corresponding architecture, the idea of
microservices will be utilized. The server generally fulfills two functions: The extrac-
tion of parameters from template-files and the final creation of reports, by replacing
parameters with the corresponding query results.

5.1. External Resources

The starting point is the creation of template-files. For this purpose a template-language
is used to differentiate parameters from plain text and furthermore, to provide addi-
tional functionality. There are proficient template languages available. Thus no own
implementation is necessary. The choice on the utilized language fell on Velocity. Exact
explanation and examples are provided in subsection 5.1.1. To query data from the
SocioCortex system, the Model-based expression Language (MxL) is used. Its designed
to query data from Hybrid-Wiki-based systems and therefore perfectly suitable for
application in connection with SocioCortex. The syntax and functionality is presented
in subsection 5.1.2. To replace the defined parameters in the template-file with the
corresponding results from the MxL queries, a library, namely XDocReport, is utilized
in server-side implementation. This library is introduced in subsection 5.1.3. Finally
the REST-API of SocioCortex is outlined to access crucial functionality of the system.

43

5. Prototypical Implementation

5.1.1. Creation of Template-files: Velocity

In the creation of template files the Microsoft Office formats .pptx and .docx are sup-
ported. Although further formats are conceivable, these should suffice for a prototypical
implementation, as they are widespread in practice. The concrete file therefore in cre-
ated manually within the corresponding desktop-based tools (Microsoft Word and
Microsoft PowerPoint).
While creating this template-file, most formatting functionality of these tools can be
used. But instead of copying the relevant data from SocioCortex, parameters are
specified at the required positions. The actual content will be later inserted by the
application.
For this purpose a template-language, namely Velocity, is utilized. As the real task of
this language is to reference objects in the Java-programming language, it provides an
appropriate syntax to reference other components as well. Moreover further constructs,
for example conditions, are provided.
Parameters defined in .docx files are created within MergeFields. An instruction on
the usage of these fields can be looked up on the Microsoft support (Microsoft Office-
Support 2016). Parameters defined in .pptx fields are simply created as normal text. To
label the parameters the $-sign is prefixed. Following an example is listed.

1 Hello. My name is $Name_String. I was born in $Birthday_Date. Consequently i

am $Age_Number years old.

Listing 5.1: Example of using Velocity to demonstrate the syntax of parameters

Additionally to the standard Velocity syntax, the type of the parameter can be indicated.
This is optional, but facilitates the definition process of parameters in the application,
as it allows an automatic extraction (the definition of parameters is part of the template
creation process: see subsection 4.2.2). An exception is the definition of lists (sequences),
as they always have to be specified manually.
Beside simple parameters, also sequences can be used. As .pptx formats do not allow
the use of MergeFields, sequences are only partially usable (only in bullet point lists).
A sequence can be loop by following syntax.

1 #foreach($app in $applications)

2 $app.Title

3 $app.Description

4 #end

Listing 5.2: Example of using Velocity to demonstrate the iteration over sequences

44

5. Prototypical Implementation

As mentioned also the usage of condition is available. Hereto classical if-statements are
applied. The following example assumes the documentation of an application-entity
with an attribute applicationPoints. Dependent on the instance, different sentences
appear in the final documentation.

1 #if($applicationPoints_Number == 5 || $applicationPoints_Number == 4)

2 $applicationName_String is of strategic importance.

3 #elseif($applicationPoints_Number == 3 || $applicationPoints_Number == 2)

4 $applicationName_String is of operational importance.

5 #else

6 $applicationName_String is obsolete.

7 #end

Listing 5.3: Example of using Velocity to demonstrate the the usage of conditions

As the examples above illustrate, very general templates can be created. By only
creating one template for a technical documentation, for instance, all applications in
companies, assumed a properly data basis, can be documented without copying the
data manually from the systems of each application. Furthermore the final documents
are all consistently formatted.
Further descriptions and examples are outlined on the website of the Velocity project
(Apache Software Foundation 2016).

45

5. Prototypical Implementation

5.1.2. Querying SocioCortex: Model-based expression Language

To fill the parameters with values, the data in the SocioCortex system has to be queried.
For this purpose the Model-based expression Language is utilized. MxL is a domain-
specific language, building on the data-model of SocioCortex (see section 2.2). It allows
the definition of queries, business rules and constraints. Since this application utilize
MxL to retrieve the data, only the querying function is applied. MxL is characterized
by following features (Software Engineering for Business Information Systems 2016c).

• Functional
The language is characterized by invoking functions. As a consequence for a
typical query operation, like "select", a corresponding function gets called (select-
function, where-function, etc.)

• Sequence oriented
MxL concentrates on the usage of sequences (ordered sets) and supplies various
functions to support these. More on the usage of sequence in the subsequent
course of this chapter.

• Object oriented
SocioCortex entities are considered as objects and entityTypes as classes. Therefore
the data-model, mentioned in chapter 2 can be queried.

• Statically type safe
The static-semantics is validated as soon as the user enters a query. By analyzing
semantic dependencies automated refactoring is possible.

On the definition of queries, the types depicted in Figure 5.2 are supported. Thus
simple as well as complex attribute types are part of the type-system of MxL.

Object

String Number Boolean Date Map

Structure Sequence Function Type

Figure 5.1.: Basic types supported by the Model-based expression Language

The template language Velocity supports basic attributes and lists, therefore the MxL-
queries usable in this application are limited to the highlighted attributes.

46

5. Prototypical Implementation

To implement lists the MxL type Sequences is used. In velocity a list basically consists
of objects with various attributes (e.g. $Application.Title, $Application.Points). To
reproduce this in MxL, Sequences of Structures are used. A Structure consists of basic
attributes (excluding Sequences). Following diagram illustrates the allowed types in the
context of this application.

Object

String Number Boolean Date

Sequence

Structure
1...*

1...*

0...* 0...* 0...* 0...*

Figure 5.2.: Type system supported in the context of the
report-generator

The user defines the type of the parameters within the application. By using the
appropriate syntax in velocity, this procedure can be supported automatically. The type
of the parameters has to be equally to the type returned by the queries. If not, the
query will throw an exception. This procedures prevents the user to formulate wrong
queries and therefore serves as additional integrity component.

As MxL is sequence-oriented and the report-generator also supports this type, the
usage of various functions can be utilized. These functions are based on the Microsoft
standard query operators and are applied on the Sequence type (Reschenhofer, Monahov,
and Matthes 2014, p. 2). A full list of functions are listed on the introduction to MxL
(Software Engineering for Business Information Systems 2016c).

• Query operators
Query operators are used to select, return, and filter data. Examples are select(),
where(), and groupBy().

• Aggregation operators
Aggregation functions providing a single output value, while inputting a source
sequence. Examples are count(), sum(), min(), and max().

47

5. Prototypical Implementation

• Quantifier operators
Quantifier functions, return either true or false (boolean), while inputting a
sequence as source. Examples are isEmpty(), and contains().

• Set operators
Classical set operators are provided. Based on a source sequence a sequence of
the same type is returned. Examples are distinct() or except().

• Element operators
Element operators return a distinct element of a sequence. Examples are first()
and last().

• Partitioning operators
Partitioning operators split the source sequence and return a smaller sequence of
the same type. Examples are rest() and skip().

MxL also comes along with a build-in query editor. It is applied and described in the
section of the configuration creation (subsection 5.2.3).

48

5. Prototypical Implementation

5.1.3. Creation of Reports: XDocReport

XDocReport is a Java-API to merge a XML-based document (like .docx or .pptx, but
also Openoffice or Libreoffice formats) with a given Java model to generate a final
report. Also converting to .pdf is possible (opensagres 2016). The template-language
Velocity and Freemarker are supported (Apache Software Foundation 2016) (Apache
FreeMarker 2016). Therefore this API is perfectly suitable for the usage in the server-side
implementation.
As this is a pure Java-API, also the server-side has to be implemented in this program-
ming language. Further details herto in section 5.3. The usage of XDocReport can be
summarized in following code snippet.

1 // 1) Load template-file and set template language

2 InputStream input = new FileInputStream(templateFile);

3 IXDocReport report = XDocReportRegistry.getRegistry().loadReport(input,

4 TemplateEngineKind.Velocity);

5

6 // 2) Create a context to replace parameters

7 IContext context = report.createContext();

8 context.put("parameterName", value);

9

10 // 3) Generate report by processing the context

11 OutputStream out = new FileOutputStream(reportFile);

12 report.process(context, out);

Listing 5.4: Report creation process with the usage of XDocReport

This code-snippet only demonstrates the functioning of XDocReport; for a working
code-fragment it is referenced to the final code of the application.
First the template-file should be loaded into an Java InputStream. As the Java-specification
and many other books explain the usage of standard in- and output features of Java,
an explanation is omitted. Furthermore the used template-language is defined. In this
case Velocity is used (TemplateEngineKind.Velocity). In the next step a context is created
to replace the parameters with the corresponding value. Finally an OutputStream is
generated for the final report and the context is processed.
The second main functionality of XDocReport is the usage of converters. As a require-
ment, different formats should be producible. Mainly the support of .pdf formats are
required, due it is not editable. Listing 5.5 shows the implementation of a converting
process.

49

5. Prototypical Implementation

1 // 1) Create option: DOCX to PDF

2 Options options = Options.getFrom(DocumentKind.DOCX).to(ConverterTypeTo.PDF);

3

4 // 2) Get the converter from the registry

5 IConverter converter = ConverterRegistry.getRegistry().getConverter(options);

6

7 // 3) Convert DOCX to PDF

8 InputStream input = new FileInputStream(DOCX_File);

9 OutputStream output = new FileOutputStream(PDF_File);

10 converter.convert(input, output, options);

Listing 5.5: Converting process with the usage of XDocReport

First the document type and the resulting type are declared. In the second step a
converter is provided. Finally the converter processes on an input-file and creates the
corresponding output-file in the defined format.

50

5. Prototypical Implementation

5.1.4. Accessing SocioCortex: REST-API and sc-angular

MxL serves to query the data-model of SocioCortex. But also the function of creating
and editing entities is needed. Thus SocioCortex also should serve as repository to
store the created artifacts. Furthermore an authentication mechanism is needed.
For this purpose SocioCortex provides a REST-API. In Listing 5.6 are examples of the
most needed operations for this thesis. Of course there are many more operations avail-
able. A full list is provided in the SocioCortex documentation (Software Engineering
for Business Information Systems 2016b).

1 // Create a new entity

2 POST /entities

3

4 // Returns an entity with given ID

5 GET /entities/{entityId}

6

7 // Get all available workspaces

8 GET /workspaces

9

10 //create a new file

11 POST /files

12

13 //Handle authentication by providing a JSON Web Token

14 GET /jwt

Listing 5.6: Example requests of the SocioCortex REST-API

To facilitate the usage of this REST-API, SocioCortex provides the library sc-angular,
used within AngularJS, wrapping the operations in easy-to-use functions. When possi-
ble the sc-angular library is used throughout this implementation.

Now all the utilized external resources are explained. These have to be used in
an approrpiate way. In the first step of the implementation, the client-side will be
elucidated.

51

5. Prototypical Implementation

5.2. Client-side

In this chapter the implementation of the client-side is described, corresponding to the
models provided in section 4.2. Because of the growing demand of web-applications in
enterprises, the client should be accessible via a website. This fact is also due to the
improvements of technology. New versions of JavaScript, HTML, and CSS emerged and
entirely new applications, with respect to usability and functionality, could be build.
The emergence of AngularJS is part of this evolution, by allowing the development of
productive, flexible, and maintainable web applications, without the usage of plug-ins,
like Flash or SilverLight (Branas 2014, Chap. 1). Also other client-side frameworks
emerged, though the choice was AngularJS, because of the support of the SocioCortex
REST-API with the package sc-angular, as described in subsection 5.1.4.
As outlined in the use cases of the application (section 4.1) there are 3 steps towards the
final creation of a report. The creation of templates, the creation of configurations, and
the creation of the reports. To provide a navigation for the end-user a central screen was
implemented. It is depicted in Figure 5.4. For this screen, as well as for all following
illustrations it should be remarked that this are only prototypical realizations. By
inspecting the application in the future, these screens might change in form heretofore.
Additionally only cutouts of the relevant elements are provided.

Select Template

Technical Documentations

Report Template - Workspace HR

Report Template - Workspace OR

Application Report

KPI - IT LandscapeKPI - IT Landscape

CreateCreate DeleteDelete

Select Configuration

Strategic Applications

Operational Applications

All Applications

CreateCreate DeleteDelete

Select Report

Report 2016

Report 2015

Report 2014

CreateCreate

Report 2013

DownloadDownload DeleteDelete

Figure 5.3.: Implementation of the homescreen

In the further description this screen is labeled as homescreen. Like the process itself
it is splitted into 3 different parts. The used example might clarify the reason for this
approach. A list of available artifacts is provided for each step. Also the functionality
of creating the corresponding artifact is provided. Each part is described in the next
sections. Apart from that, no critical functionality is done in this homescreen.

52

5. Prototypical Implementation

5.2.1. Authentication

The system only accesses resources from SocioCortex. Consequently no registration
mechanism has to be developed. Thus the above illustrated homescreen can only be
accessed through successful authentication. Access is only permitted if a valid account
is registered on SocioCortex. As described in the model, the user will be prompted,
when opening the application, to input his user name, and password. After submitting,
the corresponding function is called to validate the inputs. This simple procedure is
depicted in Figure 5.4. The warning message only appears, when the user entered
wrong credentials. When everything is correct, he gets forwarded to the homescreen.

Please sign in

velten.pe@gmail.com

●●●●●●●●●●●●

Sign inSign in

Unable to login: Please try again

Figure 5.4.: Implementation of the authentication
procedure

The function of checking the entered credentials is done with the aid of the sc-angular
package. Following listing shows the important code-fragments, while omitting details.

1 // Gets called when clicking 'Sign in'

2 $scope.login = function(){

3 //call the login-function from sc-angular

4 scAuth.login($scope.user, $scope.password)

5 .then(

6 //login successful

7 function (result) {

8 //Code when successful

9 //Navigate to homescreen

10 $location.path("/home");

11 },

12 //login not successful

13 function(reason){

14 //Show error message

15 //No further navigation

16 });

17 };

Listing 5.7: Authentication mechanism utilizing sc-angular

53

5. Prototypical Implementation

Although this mechanism behaves as expected, it became apparent, that there is the
possibility of navigating to the homescreen by following external links, or by direct
entering the corresponding URL (.../home), without correct authorization as described
above. In this case, the user obviously could not harm any data, while access to critical
SocioCortex-functionality is not granted. Nonetheless this behavior is not destined and
further checks for authorization should be avoided. Therefore a procedure to prevent
this behavior has to be developed. For this purpose the attempt of changing the location
without proper authorization should be prevented. Following code snippet reveals the
function to implement such a mechanism.

1 //Triggers event when changing location (URL)

2 $rootScope.$on('$locationChangeStart', function (event) {

3 //Check if user is authenticated

4 if(!scAuth.isAuthenticated()){

5 //User is not authenticated -> prevent the navigation

6 event.preventDefault();

7 }

8 }

Listing 5.8: Prevent navigation for non-authorized users

The function scAuth.isAuthenticated() from the sc-angular library is used in line 4. It
returns the boolean value true, if an user is logged in. By calling event.preventDefault()
the navigation to an other URL is prevented. Again the crucial functionality is pointed
out and details are omitted.
Logging out is possible with the simple method scAuth.logout().

54

5. Prototypical Implementation

5.2.2. Create Template

In this section, the activity diagram for the creation of a template is implemented
(subsection 4.2.2). The name and the parameters have to be defined and a template-file,
as described in subsection 5.1.1, has to be uploaded. Of course, to use the automatic
extraction of parameters, the template-file has to be uploaded beforehand. Figure 5.5
pictures the implementation of these functions.

 ● Title (String)
 ● Function_Points (Number)
 ● Creation_Date (Date)

Add new Parameter Add new Parameter

Select file 1Select file 1

Application Template

App_Documentation.docx

Template Name:

Propose Parameters Propose Parameters

Submit Submit Close Close

Upload Template X

Figure 5.5.: Implementation of the template
generation procedure

The user defines each parameter, which is used in the template. Otherwise the parame-
ter can not be used in later steps. A parameter composes of a name and a type. The type,
is used to validate the queries in the creation of the configuration. In doing so wrong
defined queries can be recognize by the system. To facilitate the procedure of manually
typing in every parameter (the amount of parameters is theoretically unlimited), the
function of proposing parameters is available. The button is only clickable if an actual
template-file is uploaded. The microservice ParametersService is called as described in
Listing 5.9.

55

5. Prototypical Implementation

1 // Gets called by clicking 'Propose Parameters'

2 // This function is only available if a template-file is uploaded, thus no

security checks are needed

3 $scope.proposeParameters = function(){

4 //set loading bar to show a running process

5 $scope.loadingBar = true;

6

7 // Use helper-library Upload to facilitate the uploading-process.

8 // Call POST /proposeParameters and pass the template-file as argument

9 Upload.upload({url: '/proposeParameters',

10 data: {

11 file: $scope.file

12 }

13 }) .then(function(response) {

14 //Server call successful

15 //Assign response to variable (json of parameters)

16 $scope.parameters = response.parameter;

17 }, function(response){

18 // Server call not successful

19 // Show error message

20 }).finally(function(){

21 // In both cases, stop the loading bar

22 $scope.loadingBar = false;

23 });

24 };

Listing 5.9: Call server operation to extract parameters from a template-file

The manual adding of parameters is depicted in Figure 5.6.

Creator_Name String

Parametername: Type:

New Parameter X

Close Close Submit Submit

Figure 5.6.: Implementation of the manual
definition of parameters

Finally, following Listing 5.10 demonstrates the creation of an entity within the Socio-
Cortex system.

56

5. Prototypical Implementation

1 //create varibale, containing all information to create an entity (name,

attributes, entityType)

2 var entityAttributes = scData.Entity.arrayifyAttributes({

3 name: $scope.templateName,

4 attributes: {

5 //Here all attributes with values

6 Parameters: $scope.parameters,

7 ...

8 },

9 entityType: {

10 //Get the Template entityType ID

11 id: $scope.getTemplateID()

12 }

13 });

14 //Utilizing sc-angular function to create entity

15 scData.Entity.save(entityAttributes, function () {

16 // Entity successfully created

17 }, function (data) {

18 // Errors, while creating Entity; Show error message

19 });

Listing 5.10: Create a new entity in the SocioCortex system

To keep the code clear and comprehensible first the variable entityAttributes is declared.
This variable defines all parameters, of which the final entity consists. Also the
entityType is declared in this variable. Finally the variable is passed to the sc-angular
function scData.Entity.save(). It creates a new entity in the SocioCortex system within
the declared entityType. In the corresponding success and error function, it is defined
what should happen in the respective situation. In case of success, the window can be
closed and the user is forwarded to the homescreen. In case of an error, a feedback
message should appear.

57

5. Prototypical Implementation

5.2.3. Create Configuration

After the successful creation of a template, a configuration can be generated. This
procedure is modeled in the Architecture chapter in subsection 4.2.3. First a configu-
ration name has to be defined and a workspace has to be selected. In a second step
the definition of parameters take place. This two-step procedure has technical reasons.
By opening the editors for the queries, the workspace has to be available beforehand.
Figure 5.7 shows the implementation of the first step.

Figure 5.7.: Implementation of the first step towards
the generation of a new configuration:
Definition of configuration name and
workspace

By choosing Serial Job, the procedure remains the same but the user is allowed to choose
a distinct entityType. In the reporting step each report is then created for each entity of
that type. Thus the requirement of a serial generation of reports is addressed.
A list of workspaces can easily be retrieved by utilizing following function. Of course it
also would be possible to call the REST operation directly. The same is true for all other
sc-angular operations. However, for more complex operations sc-angular simplifies the
implementation process significant and to stay consistent within the code, most REST
operations are executed via the sc-angular package.

1 scData.Workspace.query().then(

2 function (workspaces) {

3 $scope.workspaces = workspaces;

4 });

Listing 5.11: Retrieve a list of available workspaces

58

5. Prototypical Implementation

After submitting, the user will be forwarded to the next screen, which displays step 2.
Here MxL-queries will be defined. The implementation is depicted in Figure 5.8.

 „Application Report“

The result:
„Application Report“

X

Parameter: Title (Type: String)

 Today

Parameter: ReportDate (Type: Date)

 Find(‘Business Application‘).select({Titel, Points:‘Function points‘})

Parameter: Applications (Type: Sequence<Structure<Title:String,Points:Number>>)

Define Queries X

Close Close Submit Submit

Figure 5.8.: Implementation of the second step towards the generation of a
new configuration: Definition of MxL-Queries

The code editor, already mentioned in the external resources, of the MxL query language
is used. Its easily assimilable into the HTML code. For each parameter an own input
field is provided. These has to be created dynamically, while it is not clear beforehand,
how many input fields are needed. The AngularJS directive ng-repeat is used for this
issue. Each MxL-input field is passed the type and workspace. Ad hoc suggestions and
checks are therefore possible. The entered query is stored for each parameter in the
parameters array (parameters[]).

1 <!--angularJS directive for dynamically creation of MxL-editors -->

2 <div ng-repeat="param in parameters">

3 <!--headline for each editor -->

4 <label>Parameter: <i>(Type: {{param.type}})</i></label>

5 <!--MxL editor with attributes workspace and type -->

6 <mxl-expression class="mxl-form-control"

7 ng-model="param.query"

8 sc-workspace="{{workspace.id}}"

9 mxl-expected="{{param.type}}">

10 </mxl-expression>

11 </div>

Listing 5.12: Embedding of the build-in MxL-editor to define queries in the creation
of a configuration

59

5. Prototypical Implementation

To make sure every query is defined correctly, they will be checked after submitting
with scMxl.validate(). Thus it is possible to provide related feedback messages.
Subsequently a configuration-entity is created within SocioCortex. This is analogous to
the creation of a template-entity.

60

5. Prototypical Implementation

5.2.4. Create Report

Ultimately, after creation of template and configuration, the final report can be gener-
ated. Figure 5.9 depicts the implemented dialog for this step.

Report 2017

Template Name:

Template: “Application Report“
Configuration: “Operational Applications“

.pdf

 .docx

Create Report X

Submit Submit Close Close

Figure 5.9.: Implementation of the report generation
procedure

The user defines the name and the format of the report. If all entries are correct the
user can submit and therefore finalize the process. In the background the queries of
the configuration are executed. The resulting values are subsequently sent to the server
to create the report. The execution of queries is outlined in Listing 5.13.

61

5. Prototypical Implementation

1 //Get queries and associated type from configuration

2 var config = SharedVarService.getConfigurationAttributeParameters();

3 //Store promises in promiseList-array

4 var promiseList = [];

5 //Loop through each parameter

6 angular.forEach(config, function(item){

7 //Call sc-angular function to execute query; pass workspace, query, and

type

8 //store promises, as all queries are executed in parallel (asynchronous)

9 var promise = scMxl.query(

10 {workspace:

11 {id: SharedVarService.getConfigurationAttributeWorkspace()}},

12 { expression: config.query,

13 expectedType: config.type},

14 function (result) {

15 store the values in the same config array

16 config.value = result.value;

17 });

18

19 //Use promises to prevent doing requests before all queries succeeded

20 promiseList.push(promise);

21 });

22

23 //$q-function continues when all promises are resolved

24 $q.all(promiseList).then(function() {

25 //continue with proceeding

26 //Now final report-file can be generated

27 });

Listing 5.13: Execute queries to retrieve the values for the creation of the final report

As the server-side is constructed as microservice architecture, for each format an own
operation can be used. The file together with the values have to be sent to the server,
calling the required operation. To achive this, the file and the attributes have to be
combined within a FormData. Listing 5.14 outlines this procedure.

62

5. Prototypical Implementation

1 //All promises resolved from Listing 5.13

2 $q.all(promiseList).then(function() {

3 //Use FormData to combine several data to one variable, thus only one

server call is required

4 var formData = new FormData();

5 //Append template-file to the formData

6 formData.append("file", fileAsBlob, filename);

7 //Append the parameters with the values (see Listing 5.13)

8 formData.append("data", config);

9

10 //Call POST /createPDF (the corresponding microservice to the required

format)

11 //Specify appropriate arguments

12 $http.post('/createPDF', formData, {

13 transformRequest: angular.identity,

14 headers: {'Content-Type': undefined},

15 responseType: 'arraybuffer'

16 }).then(function (response) {

17 //Server call successful

18 //response contains the final report-final

19 //create report-entity

20 },function (response) {

21 //Handle error here

22 });

23);

Listing 5.14: Combine parameters and template-file for a single server request to
create the final report

Subsequently the application lists all available report-files. The user can download each
required report separately, as depicted in Figure 5.10.

Available Reports:

• Report_2016.pdf
• Report_2016.docx

Close Close

Download Reports X

Figure 5.10.: Implementation of the list of
final report-files

63

5. Prototypical Implementation

5.3. Server-side

As already mentioned in the external resources (see section 5.1) the API XDocReport is
utilized for the server-side implementation. As this API is purely Java-based, the whole
server is implemented in this programming language.
For this purpose the Play! framework is utilized. It facilitates server-, as well as client-
side implementation by providing crucial functionality. By applying an asynchronous
model and by engaging the paradigm of stateless functionality, highly scalable applica-
tion can be developed. More information as well as extensive documentation can be
looked up at the website. (Play! 2016)
The server generally is responsible for two functions. First it eases the definition of
parameters, by extracting basic-type parameters from template-files. Second it creates
reports by exchanging parameters with the corresponding query results.
By applying the microservice architecture these functionality are completely separated
from each other. Therefore it becomes easy, for instance, to exchange the functionality of
extracting parameters by a more sophisticated version. Each microservice provides its
own REST-request. Following microservices with their corresponding REST-operations
are implemented.

1 //Microservice: ParametersService

2 //Input: template-file

3 //Output: List of parameters

4 POST /proposeParameters

5

6 //Microservice: DOCXService

7 //Input: template-file and query-values

8 //Output: final .docx report

9 POST /createDOCX

10

11 //Microservice: PPTXService

12 //Input: template-file and query-values

13 //Output: final .pptx report

14 POST /createPPTX

15

16 //Microservice: PDFService

17 //Input: template-file and query-values

18 //Output: final .pdf report

19 POST /createPDF

Listing 5.15: Server-side REST-requests to address the different microservices

64

5. Prototypical Implementation

5.3.1. Extract Parameters

First the functionality of extracting parameters from the XML-based formats .pptx and
.docx is explained. By requesting the corresponding REST-operation POST /parameters
the template-file is transmitted to the server and the function extractParameters(), as
defined in the server architecture (see section 4.3), gets executed.
To understand the extration process, first the file structure of the template-files is
analyzed: A .pptx or .docx file are basically packed files, consisting serveral different
.xml files. These files, like other packed files (e.g. .zip-format) can be unpacked with
a standard unpacking-tool (The reader is suggested to try it out to see the intrinsic
structure of these files). The general structure is depicted in Figure 5.11.

document.xml

word

properties

docx - File

ppt

properties

pptx - File

slides
slide1.xml
slide2.xml

...

Figure 5.11.: File structure of Microsoft PowerPoint
and Microsoft Word documents

Each document therefore consists of subfolders and files. A .pptx file mainly consists
of two subfolders. In the folder properties several files are listed storing the properties
of the .pptx file; for instance, the dimensions of the slides. In the second folder ppt the
content of the document is stored. It also consists of a subfolder slides, which stores a
numbered .xml file for each created slide in the document.
The .docx file is structured similarly. Also it consists of a properties folder, for the same
purposes. Furthermore a folder word is available, storing a .xml file document.xml. This
file hosts the content of the file (e.g. plain text).
To extract now the parameters, the files can be unpacked, and the above mentioned
content files can be scanned for the parameters pattern. A parameter starts with a dollar
sign ($). As this is the only required pattern, further patterns are added. Therefore
the notation of ending the parameters with the corresponding type is sufficient. In

65

5. Prototypical Implementation

doing so, the pattern is adequate to accurately identify parameters and additionally it
automatically specifies the type of the parameter. This added notation is optional. But
the user has to define each parameter, without labeled by this notation, manually in
the application.
These patterns can be specified with the usage of regular expressions. The notation
should not be further explained. For interest the specification of the corresponding
Java-library is suggested (Oracle America 2016b). Listing 5.16 shows the used regular
expression (remark: dependent on the environment, escape sequences has to be added).

1 $[a-zA-Z0-9]*_(Date|date|Boolean|boolean|String|string|Number|number)

Listing 5.16: Regular expression to define the pattern of parameters

To realize the extraction of parameters, two steps have to be implemented: First the
extraction of the template-files and second, the scan through the .xml-files with the aid
of the regular expression. As the code is more complex, the following pseudo-code
abstractly describes the procedure.

1 //specify regular expression to search in file

2 regEx := "...";

3 //specify parameters-array: should be filled within this function

4 parameters[];

5 //get template-file

6 file := fileFromClient();

7 //unpack the template-file and return all subfiles

8 subfiles[] := unpackFile(file);

9

10 //loop through all subfiles

11 foreach(subfile in subfiles){

12 //check if subfile is content-related

13 if(isContentFile(subfile)){

14 //scan the content-file with the aid of the regular expression

15 x[] = searchForRegex(subfile, regEx);

16 parameters.add(x);

17 }

18 }

19 //template-file successful scanned

20 return parameters;

Listing 5.17: Extract parameters by scanning through template-files with the aid of
regular expressions

66

5. Prototypical Implementation

5.3.2. Generate Reports

The second functionality that needs to be done by the server is to generate the specific
report. For every file-format a corresponding microservice is provided. This might
create some redundant code. However, it can be decided for each environment which
microservices should be deployed. Thus some enterprises might need no support for
the PowerPoint format. In addition, the operations can be better parallelized, hence the
microservices can be distributed on different processors.
For this functionality a file needs to be uploaded in connection with the parameters.
Parameters are provided in a JSON format. It consists of the attributes name and
value, wherein the value reflects the result of the query (subsection 5.2.4 describes the
procedure on client-side). The following listing shows the corresponding server-side as
pseudo code fragment.

1 templateFile := templateFileFromClient();

2 parameters := parametersFromClient();

3

4 // 1.) Initialize XDocReport procedure with templateFile: See subsection 5.1.3

5

6 // 2.) Loop over every parameter

7 foreach(parameter in parameters){

8 //Replace parameters

9 context.put(parameter.name, parameter.value)

10 }

11

12 // 3) Generate report by processing the context: See subsection 5.1.3

Listing 5.18: Server-side generation of the final report utilizing XDocReport

All features of the application are described. However, they are implemented pro-
totypically and can of course be supplemented by further functionality. Concrete
improvement approaches are described in the outlook (section 7.3).

67

6. Evaluation

Besides the building of artifacts, also the evaluation is part of the design science
paradigm. It determines and assesses the utility, quality, and efficacy of the artifact. In
this thesis the implemented application is evaluated. For the best evaluation results,
the tool should be assessed in real business environments. Since this is not feasible
within the scope of this theses, this procedure is simulated by presenting the tool to
representatives of enterprises. Hevner proposes various types of evaluation methods.
For novel and innovative applications the descriptive evaluation is mostly suitable.
It is divided into the scenario-based- and informed argumentation approach. Both
are engaged in the evaluation of this application. Figure 6.1 illustrates the evaluation
methods according to Hevner, and highlights the applied ones. (Hevner, March, Park,
and Ram 2004, pp. 85-87)

Evaluation

Observational Analytical Descriptive Experimental Testing

Scenarios Argumentation

Figure 6.1.: Evaluation methods in the context of the design science research paradigm according
to Hevner (Hevner, March, Park, and Ram 2004, p. 86)

In the scenario-based approach, use case scenarios are constructed and solved within
a demonstration by utilizing the implemented application. The defined requirements
will be assessed within this demonstration. In this evaluation this approach is used for
assessing the functional requirements (see section 3.1). For deployment in productive
environment, further evaluation methods should be applied. Thus the experimental
and testing methods might be suitable to further assess the operational capability of
the application. (Hevner, March, Park, and Ram 2004, pp. 85-86)
In the second part of this evaluation the non-functional requirements are assessed
by providing factual arguments. This approach was taken, as many non-functional
requirements, especially the internal, could not been demonstrated within a short
period of time of a presentation. Thus the participants had to use and apply the
application by themselves for a longer period to declare meaningful statements.

68

6. Evaluation

6.1. Scenario-based Evaluation

In this section the functional requirements are evaluated by applying a scenario-based
approach. For this purpose use case scenarios are predefined and presented to the
interested companies. Representatives of 2 enterprises participated in this evaluation.

• Scenario 1: Generation of a report, showing the relationships of applications in an
enterprise
In this scenario a single report is generated. This simulates a management report
by showing the relationships and dependencies of applications in the company.
Thus aggregated attributes should be used and the most important applications
should be highlighted.

• Scenario 2: Generation of a series of technical documentations of all applications in an
enterprise
In this scenario, technical documentations are created. Therefore all attributes of
an application should be formatted and outlined in a properly style. For every
single application an own documentation should be created.

While presenting the stated scenarios, a questionnaire was distributed to quantify and
qualify the fulfillment of the functional requirements. Thus each requirement was
assessed through an absolute quantifier between 1 and 5, whereby 5 stated the agree-
ment for an entirely successful implementation of the requirement. This quantifiers,
however, give only indicators for the fulfillment of the requirements, as the amount of
participants is not representative. More interestingly, for each requirements informal
comments, suggestions, further requirements for productive application, concerns,
and problems were discussed. The questionnaire can be inspected in Appendix B.
Following, for each requirement the essential results of the evaluation are pointed out.
At the end the general impression of the participants are expounded.

• Integration of visualizations
This requirement was not implemented in the prototype, since it was only low
prioritized. Therefore this requirement was almost omitted in the discussion.
However, for deployment in productive environment, the participants stated, that
an integration of visualizations are important. Especially charts and diagrams are
necessary for properly reports.

• Document versioning mechanism
This requirement was assessed with 3.5 points by the participants. Therefore the

69

6. Evaluation

realization can be considered as averagely fulfilled. The participants coincide,
that a version-history, contained in the documents are not necessary by following
the approach of re-creating documents with actual data. Nevertheless, in the
created application the created reports were only versioned by the name of the
report-entity. The enterprises, however, demanded concrete version-numbers.
Thus the created documents should be extended with a versioning attribute,
which monotonically increases for each created report. As the SocioCortex-system
already provides an versioning mechanism, the idea came up to not create a new
report each time, but rather replace the former one. The versioning-mechanism
of SocioCortex will archive the previous versions and therefore they are still
available in future. As for now, the reports are stored in a central repository. This
also allows the creation of reports about the reports itself. While the participants
were satisfied with this approach, they missed the opportunity to store the
created reports directly to the entity, for which the report is created. This feature,
combined with a new versioning-mechanism would massively enhance the utility
of the application, as the end-user, requiring reports or documentations of specific
entities, could always accesses the last version in an easy and efficient way.

• Publishing workflow
As this feature was prioritized as low, due to the scope of this thesis, it was not
implemented. Nonetheless, for productive application, such a workflow should be
available. The participants stated, that many persons are involved in the creation
of reports or documentations, as oftentimes specific regulatory requirements have
to be complied. Thus the definition of different roles and their access rights are
needed. Therefore specific persons should be allowed to release the reports, while
others are only allowed to download final reports.

• Reuse of sub-components
This general formulated requirement was divided up in the discussion into
several points of aspects. The first aspect described the reuse of sub-components
of different created reports or templates. In the followed approach, by generating
only the whole report from components of SocioCortex, it was quantified with
1 point; therefore not implemented. Thus it is not possible to reuse existing
documents for extracting information or even merge different documents to a
comprehensive report.
The second aspect addresses the reuse of the template to generate different reports
with the same formatting and also the same text-components. This was considered
as very useful and expedient (5 points).
The third aspect was the reuse of components of SocioCortex. Supported in this
application are the usage of mainly attributes of entities. By defining queries

70

6. Evaluation

and linking them to parameters, the attributes are reused in different kinds
of reports. This approach were suffice to the requirements of the participants
and was assessed with 4 points. However, the integration of SocioCortex-text
(with enumerations, sections, etc.), which is defined via HTML, is not supported
properly. For this purpose an intermediate step of parsing those HTML sections
for the usage in text files is necessary.

• Interface to present data sources
The question focuses one the interaction with SocioCortex. Thus if SocioCortex is
properly used to retrieve the data, and furthermore, if the generated artifacts are
stored in a proper way.
This requirement was assessed with 4 points. The retrieval of information was
satisfactory. Thus the usage of MxL, a powerful query language to retrieve the
information, was utilized. Also the connection of the definition of types in the
template, with the check for the right type in the queries was considered as
helpful. However, as already briefly mentioned, storing the artifacts in a central
repository is indeed useful, but there are use cases, where the reports should be
stored in the corresponding entity / entityType. With fulfilling this additional
requirement, the integration within SocioCortex would be assessed as excellent.

• Integration of different file formats
This requirement was assessed with 4 points. The supported formats of .pptx
and .docx for templates and the additional .pdf-format for reports are the main
application areas and therefore expediently implemented. Nevertheless reason
for not completely satisfying the participants was the missing format of Microsoft
Excel. The generation of Excel-reports is crucial, as it allows complex further
processing. The participants stated, that they often need further calculations to
finalize a report.
Furthermore the converting mechanism to .pdf struggles with complex formatting;
thus reports, depended on the template, are skewed and warped. For this purpose,
of course, a faultless support of this format is requested.

• Usage of parameters and types
The application of the template-language velocity and the application of param-
eter types was considered as excellent (5 points). Not only the integration of
conditions, loops, and sequences were expedient, but also the easy-to-use syntax
and application in the word-environment. Thus no additional macros or plug-ins
are needed. The definition of the parameters type directly in the template, with
the in subsection 5.1.1 defined notation, was considered as good. Therefore no
additional parameter-types have to be supported in practice.

71

6. Evaluation

• Serial generation of documents
The serial generation of reports and documentations was considered as fully
implemented. Thus 5 points were coincidentally assessed by the participants.
Especially the definition of entity-based queries were emphasized. Additionally
the fact, that all reports had the same structure and formatting was beneficial.
One participants noticed, that the dynamic definition of the series of entities
might be useful.

• Integration of formatting functions
This requirement was assessed with 3 points. Even the approach of using desktop-
based tools was considered as very well, some limitations are available, mainly
through the usage of parameters. While it is possible to format the usage of simple
parameters, the full functional-spectrum of the tools of Microsoft cannot be used
with the definition of sequences. Thus it is not possible to define sophisticated
tables. Additionally the usage of the diagrams provided within these tools is not
applicable with information inserted by the parameters.
Another aspect was the missing integration of the HTML-components of Socio-
Cortex. For this purpose further development has to be done.

Summarizing the participants perceived the application as very useful and expedient.
The usage of this application simplifies the creation of documentations and furthermore
avoids errors. The presentation demonstrated successfully how a report-generator
within the SocioCortex environment might look like. However, for productive usage
some parts are still missing and further development is inevitable.

As the scenario-based evaluation only concentrated on the functional requirements,
the non-functional requirement are also important to evaluate. For this purpose an
informed argumentation is provided in the next section.

72

6. Evaluation

6.2. Informed Argumentation

For the evaluation of the non-functional requirements the method of informed argumen-
tation is utilized. This follows the design science research paradigm by Hevner, by
conducting a descriptive evaluation (Hevner, March, Park, and Ram 2004). For this
purpose convincing arguments are provided, to critically reflect the realization of the
requirements, outlined in section 3.2.
For the external non-functional requirements following arguments can be stated.

• Availability
The requirement of availability is hard to measure, while not deploying the
application in a productive environment, as it depends on the used servers, the
internet connection, and other environmental influences. However, by applying
properly exception handling, both in the client- and server-side, the application is
prevented from crashes. Furthermore the input to the server is checked, when
calling REST-API operations, and proper failure-messages are returned. This
also prevents the collapse of the system. Therefore it can be assumed, that the
application is very robust and should have high availability, when deploying it in
a proper environment.

• Integrity
By applying different kinds of checks and validations, the integrity constraint
is fulfilled. Thus all input fields in the client-side are validated. Therefore data
inaccuracy is prevented. For the file-inputs, however, only the right format
is checked. While uploading the template-file, no checks for correct usage of
the template-language is done. For this reason, an additional step should be
implemented, testing the template-files for correct syntax, or another approach
might be the implementation of a word plug-in, checking and supporting the
definition of parameters.

• Interoperability
For the scope of this thesis, the application only had to connect with the SocioCor-
tex system. To fulfill the requirement of interoperability, different design decisions
were made. Therefore the server was constructed and implemented with the
microservice architecture. Furthermore it does not involve any connection specific
operations (e.g. to SocioCortex). Additionally by providing a REST-API, other
application can easily access the server’s functionality for their own purposes.
However, the client is more specified to access only SocioCortex. So by connecting
the system with other systems, several parts have to be changed and adapted.

73

6. Evaluation

For this reason, among others, especially modifiability was focused, which is
described later.

• Performance
The performance is also a requirement which is hard to determine, since it also
depends on the environment. While the system itself behaved rather slow on
the development environment, tests on different computer showed, that the
application runs very smoothly. This behavior was as expected, since no complex
tasks (NP-complete or higher order run-time algorithms) were used at all. Also
the server- and SocioCortex-calls, where tried to execute in parallel. An exception
to this is the execution of a serial job. For implementation reasons these server
calls were synchronized. This leads to a delay in the process. In the future a more
talented developer might replace this behavior to a more sophisticated version.

• Security
For security reasons, an authorization mechanism is provided. No other endeav-
ors were contrived for this requirement, as it would exceed the scope of this
thesis. For application at an enterprises, which handle sensitive data and where
all applications have to confirm with security polices, of course more security
measures have to be implemented: Examples are the encryption of data or the
prevention against hacker attacks.

• Usability
For this external measure, mainly the client-side is liable. Different efforts are
implemented to increase the usability for the user. So first, in case of wrong inputs
or miscellaneous failures, feedback messages are provided. Also loading-bars
and other indications are implemented to show the user that an operation is in
progress. For the design of the website, the front-end framework bootstrap was
used. It provides sleek and intuitive web-components which also decrease the
effort of development (Bootstrap 2016).

For the internal non-functional requirements following arguments can be stated.

• Scalability
By using a scalable framework for the server-side development in combination
with the architecture of microservices, the server-side should be very scalable.
Thus the services can be distributed among several processors and by the stateless
implementation, all server-calls can be processed in parallel. However, this
procedure is not tested and therefore only of theoretical nature. The application
does not store any data and therefore a growing amount of users, will not change
the situation, yet more processors should be deployed.

74

6. Evaluation

• Modifiability
While building a prototype, the modifiability-requirement was especially em-
phasized, since subsequent developers might take this application for the basis
of new systems, or even further develop the application itself. Therefore dif-
ferent aspects were respected. The first aspect is the general structure of the
application. By using the microservice architecture, the programming code is
well separated and encapsulated. Thus it becomes easy to change and maintain
a specific functionality. A similar approach was strived in the structure of the
client-side, so the different steps to the creation of a final report were separated
into encapsulated packages of code. Here even a step further was taken, by
implementing separate controller for each coherent package of functionality. Each
client-side controller therefore is only responsible for a manageable amount of
code. By only considering the name of the controller, the functionality it contains,
should become clear. While not only implementing in this structured way, also
detailed models were provided, which can serve as anchor to get an overview
and to understand the structure of this application. Here a de facto standard
notation for modeling software architectures was utilized.
A further endeavor is the extensive documentation of the programming code. So
for the server-side, which was implemented with the aid of java, the notation of
Javadoc was used. As a consequence it is possible to generate a HTML based
documentation of the functionality. More information about Javadoc is provided
at the website of the Java documentation (Oracle America 2016a). Also the client-
side was well documented by providing comments and explanations for every
available function. Of course the programming code was formatted properly and
also the variables and functions were labeled according to their functionality and
usage. Ultimately a readme-file, consisting of brief instructions, was created to
get a fast access to the application.

The last step of evaluating the application was accomplished by showing the strengths
and weaknesses. This can serve as an anchor for further developments. To complete
this thesis a conclusion is provided in the next chapter.

75

7. Conclusion

In the evaluation chapter, the strengths and weaknesses of the application were dis-
cussed. This was the final step of the design science research paradigm. However, to
finalize this thesis section 7.1 will summarize the done work. Hereafter the applica-
tion as well as the thesis approach will be critically examined. Ultimately an outlook
proposes ideas for further research and development.

7.1. Summary

The main task of this thesis was the analysis of requirements from practice to implement
a suitable report generating tool in the context of Enterprise Architecture Management.
For this reason the topic was motivated, the problems derived, the objective stated and
to frame the proceeding, the design science paradigm was introduced. It describes the
procedure to develop and evaluate artifacts in information systems research. The input
hereto is derived from practical business cases and from theoretical foundations.
Subsequently the subject area was defined more accurately. Thus the tasks and goals of
Enterprise Architecture Management was defined by carving out the essential aspects
from academia.
Even though the topic of the Documentation of the Enterprise Architecture consists,
among other points, also of the collection of data, this field was only partially treated.
By using the system SocioCortex as data provider, this confinement could be attenuated.
SocioCortex generates and collects the data, applying a collaborative Hybrid-Wiki
approach.
In the next step, functional requirements were collected by conducting interviews with
Enterprise Architects from different enterprises. These were abstracted to derive more
general requirements for the goal of providing a more general solution. Also, based
on the statements of the participants and to comply with the scope of this thesis each
requirement was prioritized. Beside the functional requirements, also non-functional
requirements for corporate and internet applications were identified through literature
research.
Based on these requirements a solution was constructed. For this reason, the modeling-
language UML was utilized. It specifies different types of diagrams to illustrate the
behavior and structure of applications. UML can be considered as industrial standard.
The provided diagrams not only facilitate the realization in programming code, but

76

7. Conclusion

also provide an overview for further development or maintenance. The use cases of the
application and their relationship to the outer environment was described with the aid
of the use case diagram. The activity diagrams depict the procedure on the client-side
and a derivation of a class diagram was utilized to constitute the server-side. The
structure of the server was inspired by the microservice architecture. Thus functionality
were encapsulated to fulfill the requirement of scalability and modifiability. Finally a
sequence-diagram described the communication between the different components of
the application.
This models were subsequently implemented in programming code. Different external
resources were used for this purpose. These enabled and facilitated the implementation
of such a reporting-tool. Thus the template-language Velocity was applied to create
template-files. To generate the final reports the Java-library XDocReport was used
and for the access to SocioCortex resources the corresponding REST-API were utilized.
Additionally the Model-based expression Language (MxL) was introduced to formulate
queries to access content and attributes of the SocioCortex-system.
Each step of the implementation was briefly described. Hereto the implementation
followed the previously produced models. Thus in the client-side the authentication,
the creation of template, the creation of configurations, and the creation of final reports
was described with the aid of figurative representations and by providing small and
declarative code-snippets.
The server was developed with the application of the Play! framework. It allows
the stateless and scalable development of web applications. However, it was only
used within the server-development. Furthermore it supports the Java-programming
language. This was required as the XDocReport library is purely Java-based. In
principle the server fulfills two functions. First the extraction of parameters from
template-files and second the generation of reports, by exchanging parameters with
concrete values. Supported formats are Microsoft Word and Microsoft PowerPoint files.
In the last step, the application was presented to interested enterprises, by performing
predefined scenarios. With the aid of a questionnaire and by extensive discussion an
evaluation could be conducted. Consequently the strengths and weaknesses of the
application could be determined. Also required functionality for productive application
could be derived in this conversations.
To evaluate the non-functional requirements, the method of informed argumentation
was utilized. It is an evaluation method, proposed in the design science paradigm, to
assess the quality with factual and convincing arguments.

77

7. Conclusion

7.2. Critical Appraisal

This section provides a critical appraisal of the done work. For this purpose, not only
the limitations of the outcome (the implemented application) are reflected, but also the
approach and procedure of this thesis is illuminated.

7.2.1. Limitations

While the weaknesses of the application were already discussed in chapter 6, here a
more generally view should be provided by inspecting the limitations of the imple-
mented prototype. Thus the perspective of an entrepreneur is applied, to filter out the
missing criteria to apply the system in real enterprises.
One critical limitation is the creation of more sophisticated reports, since the creation
of reports is the main functionality of the application. Especially for reports on the
management level, crucial components, for instance visualizations and diagrams, are
missing. It is neither possible to create diagrams out of the SocioCortex systems nor to
create word-integrated diagrams, filled with data of SocioCortex. Also by converting
the documents, many components, provided by the Office tools are skewed. Thus a
more elaborated converting function has to be implemented. For this implementation
an open-source converter was applied. For the application in enterprises a propriety
solution might be more convenient.
For the employment in real enterprises all missing requirements should be fulfilled.
Additionally further requirements arose in the evaluation discussion, which can also be
classified as crucial. Thus a workflow should be implemented to release documentations
and reports. In this context also roles and rights needs to be defined. As mentioned,
visualizations should be integrated properly. Also the versioning-mechanism needs
to be enhanced. A necessary requirement, stated in the evaluation discussion, is the
integration of Microsoft Excel files, as they are extensively used for further calculations.
Through this, also the usage of the Office diagrams might be possible, as they use
the Excel-format as data basis. By implementing the support of the Excel-format, it is
suggested to implement this functionality direct within the XDocReport project. The
adaption of the application to this new format should be straightforward.
A more technical limitations is the intricateness of defining parameters within the
application, as not all parameters can be extracted properly from the template-file. This
laborious process may also lead to erroneous input. A more sophisticated algorithm
may completely extract the parameters with the corresponding type. Especially the
identification of sequences, with the immanent attributes is an important challenge.
This feature would simplify the step of the creation of a template significantly.

78

7. Conclusion

7.2.2. Thesis Approach

In this section the applied procedure and approach of this these is critically analyzed.
While the general paradigm of design science research provided a foundation in the
procedure of this theses, different aspects could have been enhanced to not only increase
the additions to the knowledge base, but also to provide a better solution for specific
business-cases. First the collection of functional requirements is regarded. Although
the collected requirements were abstracted to formulate more general requirements,
they cannot be considered to be representative. Thus other enterprises may have
other problem areas. An elaborated approach would be to interview more companies,
for instance through applying a representative survey. Another approach might be
the focus on only one specific environment, and to concentrate on specific use- and
business- cases. In doing so, more profound content could be added to the knowledge
base. Also coordination problems could have been avoided. As the reader might may
already asked himself, why four participants contributed their requirements and only
two companies evaluated the finished prototype.
The problem of representative results can also be transferred to the evaluation step.
Thus it cannot be stated that the implemented application solves the problem of cre-
ating documentation for all other companies, although the participants remarked the
potential of the application.

Also the modeling and architecture process could be enhanced by a more iterative
approach. Therefore meetings and feedback sessions should be conducted. Even if
concrete requirements were collected, they left a big margin, which on the one-hand
left many freedoms for the development, but on the other hand the requirements
could not be fully comply with the different views of the companies. In feedback
sessions, the models could be adapted and improved in mutual accordance. In doing
so also the problem of late arising requirements could be prevented. For example,
the implementation of a serial job occurred in a midterm review. As the process of
implementing was still in the early phase, this functionality could be implemented.
In contrast, the requirement of supporting the Excel-format arose in the evaluation
meeting. Of course the implementation was finished, and due to strict submission dates
and a defined scope of this theses, this requirements could not been implemented. Also
requirements as the enhanced versioning mechanism, could easily been implemented,
if it came up in an iterative approach. This approach migh orient, for instance, on the
agile-framework Scrum, by implementing only small artifacts in sprints.

79

7. Conclusion

7.3. Outlook

The limitations of the application were identified. Due to the prototypical implemen-
tation, arising restrictions and open issues were expected. However, the application,
presented at real enterprises, turned out to be very appealing. It showed the existing
interest of the participants and thus proved the potential of this approach of generating
documentations.
Assuming the fully implementation of the missing requirements, different directions
are conceivable for further utilization. Following some of these are outlined, which
arose both in the course of this thesis and in the conversation with the participating
enterprises. It should be remarked, that these are only suggestions and in the context
of other purposes different ideas might come up.
The most target-aimed aspect, would be a more elaborated integration within Socio-
Cortex. For example, template-files might be assigned to entities. As the they have the
same structure, this could take place on the entityType level. Thus for every entityType,
consisting of many entities, only one template-file will be generated, representing the
text-output of an entity. In this context the template-file would serve as a kind of
style-sheet. If the end user now, would like to export an entity to a concrete file, the
report generating step is executed and the user would always get access to formatted,
consistent, and coherent documents. This functionality would not only enhance the
powerfulness of SocioCortex, but also increase the usability for the end-user.
A related approach would be the central generation of reports, but the single created
reports are not stored centrally but rather assigned to the different entities. Thus
the report-generator would be only accessible for designated groups of persons, for
example Enterprise Architects or the compliance department of an enterprise.
A functionality which would increase the utility of the application to a large extent
is an automatic update of generated reports, when data changes. This functionality,
combined with the above mentioned ideas and a sophisticated versioning-mechanism
would create a very valuable and powerful tool to manage documentations and reports
in a company.
The success of this application will be revealed in the future, as it depends on the com-
mitment of other developers and the extent of the support from interested enterprises.
This thesis, however, laid the foundation for further developments and paved the way
to not only create serious solutions preventing the problems of today’s documentation
procedures, but also to enrich this domain with novel and innovative approaches and
ideas.

80

Bibliography

Apache FreeMarker (2016). url: http://freemarker.org/ (visited on 09/14/2016).

Apache Software Foundation (2016). Velocity. url: http://velocity.apache.org/
(visited on 09/14/2016).

Bernard, S. A. (2012). An Introduction to Enterprise Architecture. Third Edition. Author-
House. isbn: 9781477258019.

Bootstrap (2016). getbootstrap.com. url: http://getbootstrap.com/ (visited on 09/14/2016).

Branas, R. (2014). AngularJS Essentials. Packt Publishing Ltd.

Büchner, T., F. Matthes, and C. Neubert (2009). “A Concept and Service based Analysis
of Commercial and Open Source Enterprise 2.0 Tools.” In: KMIS, pp. 37–45.

Buckl, S., T. Dierl, F. Matthes, R. Ramacher, and C. M. Schweda (2008). “Current and
future tool support for ea management.” In: Proceedings of Workshop MDD, SOA und
IT-Management (MSI 2008), Oldenburg, pp. 9–24.

Buckl, S., T. Dierl, F. Matthes, and C. M. Schweda (2010). “Building blocks for enterprise
architecture management solutions.” In: Working Conference on Practice-Driven Research
on Enterprise Transformation. Springer, pp. 17–46.

Buckl, S., F. Matthes, C. Neubert, and C. M. Schweda (2009). “A wiki-based approach
to enterprise architecture documentation and analysis.” In: 17th European Conference
on Information Systems (ECIS2009), pp. 1476–1487.

Buckl, S. and C. M. Schweda (2011). On the state-of-the-art in enterprise architecture
management literature.

Buschle, M., H. Holm, T. Sommestad, M. Ekstedt, and K. Shahzad (2012). “A Tool for
Automatic Enterprise Architecture Modeling.” In: IS Olympics: Information Systems
in a Diverse World: CAiSE Forum 2011, London, UK, June 20-24, 2011, Selected Extended
Papers. Ed. by S. Nurcan. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–15.
isbn: 978-3-642-29749-6. doi: 10.1007/978-3-642-29749-6_1.

Chan, Y. E. (2002). “Why haven’t we mastered alignment? The importance of the
informal organization structure.” In: MIS Quarterly Executive, pp. 97–112.

81

http://freemarker.org/
http://velocity.apache.org/
http://getbootstrap.com/
http://dx.doi.org/10.1007/978-3-642-29749-6_1

Bibliography

Chan, Y. E., S. L. Huff, D. W. Barclay, and D. G. Copeland (1997). “Business Strategic
Orientation, Information Systems Strategic Orientation, and Strategic Alignment.” In:
Info. Sys. Research 8 (2). jun, pp. 125–150. issn: 1526-5536. doi: 10.1287/isre.8.2.125.

Diefenthaler, P. and B. Bauer (2014). “Using gap analysis to support feedback loops for
enterprise architecture management.” In: MKWI.

Farwick, M., R. Breu, M. Hauder, S. Roth, and F. Matthes (2013). “Enterprise architecture
documentation: Empirical analysis of information sources for automation.” In: System
Sciences (HICSS), 2013 46th Hawaii International Conference on. IEEE, pp. 3868–3877.

Fowler, M. (2004). UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional.

Grunow, S., F. Matthes, and S. Roth (2013). “Towards automated enterprise architec-
ture documentation: Data quality aspects of SAP PI.” In: Advances in Databases and
Information Systems. Springer, pp. 103–113.

Hanschke, I. (2009). Strategic IT management: a toolkit for enterprise architecture management.
Springer Science & Business Media.

Hauder, M., F. Matthes, and S. Roth (2012). “Challenges for automated enterprise
architecture documentation.” In: Trends in Enterprise Architecture Research and Practice-
Driven Research on Enterprise Transformation. Springer, pp. 21–39.

Hevner, A. R., S. T. March, J. Park, and S. Ram (2004). “Design Science in Information
Systems Research.” In: MIS Q 28 (1). mar, pp. 75–105. issn: 0276-7783.

“ISO/IEC/IEEE Draft Standard for Systems and Software Engineering – Architectural
Description” (2010). In: ISO/IEC/IEEE P42010_D8, June 2010. July, pp. 1–53.

iteratec GmbH (2016). Iteraplan. url: www.iteraplan.de/en/ (visited on 09/14/2016).

Langenberg, K. and A. Wegmann (2004). Enterprise architecture: What aspects is current
research targeting.

Luftman, J., R. Kempaiah, and E. Nash (2006). “Key issues for IT executives 2005.” In:
MIS Quarterly Executive 5 (2).

M. Farwick, B. Agreiter, R. Breu, M. Häring, K. Voges, and I. Hanschke (2010). “To-
wards Living Landscape Models: Automated Integration of Infrastructure Cloud in
Enterprise Architecture Management.” In: 2010 IEEE 3rd International Conference on
Cloud Computing. July, pp. 35–42. doi: 10.1109/CLOUD.2010.20.

Masse, M. (2011). REST API design rulebook. O’Reilly Media, Inc.

82

http://dx.doi.org/10.1287/isre.8.2.125
www.iteraplan.de/en/
http://dx.doi.org/10.1109/CLOUD.2010.20

Bibliography

Matthes, F., S. Buckl, J. Leitel, and C. M. Schweda (2008). Enterprise architecture manage-
ment tool survey 2008. Technische Universität München.

Matthes, F., C. Neubert, and A. Steinhoff (2011). “Hybrid Wikis: Empowering Users to
Collaboratively Structure Information.” In: ICSOFT (1) 11, pp. 250–259.

McDavid, D. (2003). “The business-IT gap: A key challenge.” In: IBM Research Memo.

Microsoft Office-Support (2016). Insert and format field codes in Word 2010. url: https:
//support.office.com/en-us/article/Insert-and-format-field-codes-in-

Word-2010-7e9ea3b4-83ec-4203-9e66-4efc027f2cf3 (visited on 09/14/2016).

Newman, S. (2015). Building Microservices. Designing Fine-Grained Systems. O’Reilly
Media, Inc.

Niemann, K. D. (2006). From enterprise architecture to IT governance. Vol. 1. Springer.

Object Management Group (2015). OMG Unified Modeling Language (version 2.5). Ver-
sion formal/2015-03-01.

Object Management Group, I. (2016). OMG. Object management Group. url: http :

//www.omg.org/ (visited on 09/14/2016).

opensagres (2016). XDocReport (MIT license). url: https://github.com/opensagres/
xdocreport (visited on 09/14/2016).

Oracle America, I. (2016a). Javadoc SE Documentation - Javadoc. url: http://www.oracle.
com/technetwork/java/javase/documentation/index-jsp-135444.html (visited
on 09/14/2016).

– (2016b). Specification: java.util.regex. url: https://docs.oracle.com/javase/7/docs/
api/java/util/regex/Pattern.html (visited on 09/14/2016).

O’reilly, T. (2007). “What is Web 2.0: Design patterns and business models for the next
generation of software.” In: Communications & strategies (1), pp. 17–37.

Play! (2016). Play Framework. url: https://www.playframework.com/ (visited on
09/14/2016).

Reschenhofer, T., M. Bhat, A. Hernandez-Mendez, and F. Matthes (2016). “Lessons
learned in aligning data and model evolution in collaborative information systems.”
In: Proceedings of the 38th International Conference on Software Engineering Companion.
ACM, pp. 132–141.

Reschenhofer, T., I. Monahov, and F. Matthes (2014). “Type-Safety in EA Model Analy-
sis.” In: EDOC Workshops, pp. 87–94.

83

https://support.office.com/en-us/article/Insert-and-format-field-codes-in-Word-2010-7e9ea3b4-83ec-4203-9e66-4efc027f2cf3
https://support.office.com/en-us/article/Insert-and-format-field-codes-in-Word-2010-7e9ea3b4-83ec-4203-9e66-4efc027f2cf3
https://support.office.com/en-us/article/Insert-and-format-field-codes-in-Word-2010-7e9ea3b4-83ec-4203-9e66-4efc027f2cf3
http://www.omg.org/
http://www.omg.org/
https://github.com/opensagres/xdocreport
https://github.com/opensagres/xdocreport
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://www.playframework.com/

Bibliography

Richardson, R. and C. S. Director (2008). “CSI computer crime and security survey.” In:
Computer Security Institute 1, pp. 1–30.

Roth, S., M. Hauder, M. Farwick, R. Breu, and F. Matthes (2013). “Enterprise Architec-
ture Documentation: Current Practices and Future Directions.” In: Wirtschaftsinfor-
matik, p. 58.

S. Murugesan (2007). “Understanding Web 2.0.” In: IT Professional 9 (4). July, pp. 34–41.
issn: 1520-9202. doi: 10.1109/MITP.2007.78.

SEBIS - GitHub (2016). GitHub Repository. url: https://github.com/sebischair/
(visited on 09/14/2016).

SocioCortex - A Social Information Hub (2016). Software. url: https://wwwmatthes.in.
tum.de/pages/13uzffgwlh8z4/SocioCortex (visited on 09/14/2016).

Software Engineering for Business Information Systems (2016a). SocioCortex Community
Workshop Series. url: https : / / wwwmatthes . in . tum . de / pages / z404x99bysf0 /

SocioCortex-Community-Workshop-Series (visited on 09/14/2016).

– (2016b). SocioCortex - Documentation. url: http://www.sociocortex.com/documentation/
(visited on 09/14/2016).

– (2016c). SocioCortex Tutorial. url: http://www.sociocortex.com/tutorial/ (visited
on 09/14/2016).

– (2016d). SocioCortex - Visualizer. url: http://visualizer.sociocortex.com (visited
on 09/14/2016).

The W. Edwards Deming Institute (2016). url: https://www.deming.org/ (visited on
09/14/2016).

W. J. Dzidek, E. Arisholm, and L. C. Briand (2008). “A Realistic Empirical Evaluation
of the Costs and Benefits of UML in Software Maintenance.” In: IEEE Transactions
on Software Engineering 34 (3). May, pp. 407–432. issn: 0098-5589. doi: 10.1109/TSE.
2008.15.

Weill, P. and J. W. Ross (2009). IT Savvy: What top executives must know to go from pain to
gain. Harvard Business Press.

Wiegers, K. and J. Beatty (2013). Software requirements. 3rd ed. Pearson Education.

Wikimedia Foundation (2016). Wikipedia - The free Encyclopedia. url: https://www.
wikipedia.org/ (visited on 09/14/2016).

84

http://dx.doi.org/10.1109/MITP.2007.78
https://github.com/sebischair/
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex
https://wwwmatthes.in.tum.de/pages/z404x99bysf0/SocioCortex-Community-Workshop-Series
https://wwwmatthes.in.tum.de/pages/z404x99bysf0/SocioCortex-Community-Workshop-Series
http://www.sociocortex.com/documentation/
http://www.sociocortex.com/tutorial/
http://visualizer.sociocortex.com
https://www.deming.org/
http://dx.doi.org/10.1109/TSE.2008.15
http://dx.doi.org/10.1109/TSE.2008.15
https://www.wikipedia.org/
https://www.wikipedia.org/

Bibliography

Winter, V. L. and S. Bhattacharya (2012). High Integrity Software. Vol. 577. Springer
Science & Business Media.

85

Appendices

86

A. List of Requirements

ID Requirement

R-1 Connection with different data sources (PlanningIT, Wikis, SocioCortex)

R-2 Combine text parts to whole documents

R-3 Use wikipage as data source

R-4 Export document to .pdf

R-5 Including of .jpeg files in the document

R-6 Approval work flow

R-7 Version-mechanism: Differentiate between old and new versions

R-8 Inclusion of simple parameters

R-9 Inclusion of plain text

R-10 Inclusion of lists

R-11 Separation of Content and Design

R-12 Merging of documents

R-13 Allow printing of whole wikipages

R-14 Formatting functions (compared to Office Word): fonts, section breaks, etc.

R-15 Locking up created documents

R-16 Availability to further process the documents

R-17 Generation of pictures

R-18 Generation presentation files (e.g. .pptx)

R-19 Integration of different file systems (e.g. Dropbox, Owncloud)

R-20 Annotation of document versions

R-21 Definition of attribute categories

R-22 Creation of a document for each entity in an entityType at once

R-23 Integration of pictures and diagrams from entities

R-24 Archiving of old documents

87

B. Evaluation Questionnaire

1. Reuse of sub-components
Sub-components can be reused appropriately in different documents. Therefore a
laborious process to amend this documents is prevented.

2. Usage of parameters and types
Both simple and complex parameters are used suitably and sufficiently to generate
reports and documentations.

3. Interface to present data sources (SocioCortex)
The data are suitably extracted from the system. Thus all necessary data to create
documentations can be loaded from the system. In addition, created reports are
stored appropriately in the system.

4. Integration of formatting functions (excluding visualizations)
The formatting functionality to create documentations is in line with expectations.
Thus no formatting functionality to generate final documentations is missing.

5. Serial generation of documents
The functionality for serial processing of documents is sufficient. It will not only
save time, but also errors are avoided.

6. Integration of different file formats
The supported formats are sufficient for documentation and reports.

7. Document versioning mechanism
The versioning of documentation is sufficient. By the procedure no classical
histories are needed.

88

	Abstract
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Thesis Outline
	Introduction
	Motivation
	Problem Statement
	Objectives and Approach

	Foundations
	Enterprise Architecture Management
	Hybrid-Wikis and SocioCortex

	Requirements Analysis
	Functional Requirements
	Non-functional Requirements

	Modeling and Architecture
	Use Cases
	Client-side
	Authentication
	Create Template
	Create Configuration
	Create Report

	Server-side
	Interaction of the Components

	Prototypical Implementation
	External Resources
	Creation of Template-files: Velocity
	Querying SocioCortex: Model-based expression Language
	Creation of Reports: XDocReport
	Accessing SocioCortex: REST-API and sc-angular

	Client-side
	Authentication
	Create Template
	Create Configuration
	Create Report

	Server-side
	Extract Parameters
	Generate Reports

	Evaluation
	Scenario-based Evaluation
	Informed Argumentation

	Conclusion
	Summary
	Critical Appraisal
	Limitations
	Thesis Approach

	Outlook

	Bibliography
	Appendices
	List of Requirements
	Evaluation Questionnaire

